期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
改进YOLOpose的轻量化多人姿态检测模型 被引量:1
1
作者 张欣毅 张运楚 +1 位作者 王菲 刘一铭 《小型微型计算机系统》 北大核心 2025年第1期167-172,共6页
二维人体姿态估计对安全生产、智能交互等研究都有重要的意义.针对目前的人体姿态估计模型计算量大、检测速度慢等问题,本文提出一种基于YOLOpose模型的轻量化改进算法.首先引入运算更精巧的GSConv卷积模块替换普通Conv卷积,大大降低模... 二维人体姿态估计对安全生产、智能交互等研究都有重要的意义.针对目前的人体姿态估计模型计算量大、检测速度慢等问题,本文提出一种基于YOLOpose模型的轻量化改进算法.首先引入运算更精巧的GSConv卷积模块替换普通Conv卷积,大大降低模型计算量和复杂度;然后用CARAFE模块替换UPSample模块,完成上采样工作,同时引入CBAM注意力机制模块以避免模型轻量化带来的精度降低的问题.实验结果表明,YOLOpose模型经过上述轻量化改进后,模型体量降低为135.6MB,降低了约15.8%,GFLOPS降为了86.9,降低了约15.0%,模型计算量显著降低,再加入CBAM注意力机制对模型精度影响较小,改进后模型既可以保证识别的准确度,又可以实现检测算法的轻量化. 展开更多
关键词 姿态估计 YOLOpose 量化 GSConv卷积 CARAFE模块
在线阅读 下载PDF
基于CNN和Transformer的轻量化电能质量扰动识别模型 被引量:2
2
作者 张彼德 邱杰 +3 位作者 娄广鑫 周灿 罗蜻清 李天倩 《电力工程技术》 北大核心 2025年第1期69-78,共10页
针对目前基于深度学习的电能质量扰动(power quality disturbances,PQDs)识别模型参数量多和计算复杂度较高的问题,文中提出了一种卷积神经网络(convolutional neural networks,CNN)融合Transformer(CNN and Transformer,CaT)的轻量化P... 针对目前基于深度学习的电能质量扰动(power quality disturbances,PQDs)识别模型参数量多和计算复杂度较高的问题,文中提出了一种卷积神经网络(convolutional neural networks,CNN)融合Transformer(CNN and Transformer,CaT)的轻量化PQDs识别模型。首先,利用深度可分离卷积初步提取扰动信号的局部特征;其次,提出一种高效的软阈值模块,在不显著增加模型参数量与计算复杂度的同时减少特征中的噪声与冗余特征;然后,利用Transformer模型挖掘PQDs信号的全局特征;最后,通过池化层、线性层和Softmax层完成PQDs识别。仿真实验表明,文中所提CaT模型在参数量和浮点运算数较少的情况下能够有效完成PQDs识别,对PQDs信号识别准确率高,具有良好的噪声鲁棒性。同时,得益于轻量化和端到端的模型设计,CaT模型相对于其他深度学习模型的推理时间更短。 展开更多
关键词 电能质量扰动(PQDs) 量化 参数量 高效软阈值模块 深度可分离卷积 Transformer模型
在线阅读 下载PDF
基于改进YOLOv8n的道路裂缝检测轻量化模型
3
作者 朱佳慧 刘艺 张登银 《数据采集与处理》 北大核心 2025年第5期1333-1347,共15页
针对道路裂缝外观特征易受环境干扰、细小裂缝漏检率高、检测设备计算资源受限的问题,提出了轻量级检测模型MCA-YOLO-A。该模型基于YOLOv8n,用更轻量的MobileNetV3特征提取网络来代替原主干网络,并融合了精确捕捉空间信息的坐标注意力(C... 针对道路裂缝外观特征易受环境干扰、细小裂缝漏检率高、检测设备计算资源受限的问题,提出了轻量级检测模型MCA-YOLO-A。该模型基于YOLOv8n,用更轻量的MobileNetV3特征提取网络来代替原主干网络,并融合了精确捕捉空间信息的坐标注意力(Coordinate attention,CA)模块,提高了特征提取能力。同时,引入了适用于轻量级网络的Alpha-IOU损失函数,使得网络整体性能提升。此外,增加了小目标检测层,提升细小裂缝的识别精度。MCA-YOLO-A模型在道路裂缝数据集上平均精度均值mAP_0.5和F1分数分别达到0.930和0.893,相较于原YOLOv8n模型分别提升了7.0%和9.7%,参数量仅为6.0M,减少了4.8%,检测速度达到95帧/s。实验结果证明,该模型具备高精度、轻量化以及出色的泛化能力,更适合应用于计算资源受限的嵌入式系统和移动终端等场景。 展开更多
关键词 道路裂缝 图像检测 深度可分离卷积 YOLOv8 注意力模块 量化
在线阅读 下载PDF
面向低算力设备的改进轻量化语音识别模型
4
作者 李政霖 介婧 +2 位作者 柴佳辉 郑慧 武晓莉 《计算机工程与设计》 北大核心 2025年第10期2969-2977,共9页
针对语音识别模型在低算力设备上部署难且识别精度低的问题,提出一种改进的轻量化语音识别模型。该模型采用双通道多核卷积结构,以深度残差收缩网络为主要识别单元;引入卷积块注意力模块提高其对通道和空间位置的特征敏感度;结合门控线... 针对语音识别模型在低算力设备上部署难且识别精度低的问题,提出一种改进的轻量化语音识别模型。该模型采用双通道多核卷积结构,以深度残差收缩网络为主要识别单元;引入卷积块注意力模块提高其对通道和空间位置的特征敏感度;结合门控线性单元,提高对长序列语音信息的识别能力;采用非对称卷积策略减少参数量;通过像素注意力引导模块进行特征融合,增强对关键语音信息的捕捉能力。在中文数据集Aishell-1上的实验结果表明,该模型字错误率为12.13%,相较于结果最好的ResNet降低了5.76%,同时其参数量因引入非对称卷积策略降低了40.26%,有效降低了模型的复杂度。 展开更多
关键词 量化语音识别模型 双通道多核卷积结构 深度残差收缩网络 卷积块注意力模块 门控线性单元 非对称卷积策略 像素注意力引导模块
在线阅读 下载PDF
基于YOLO v5的农田杂草识别轻量化方法研究 被引量:27
5
作者 冀汶莉 刘洲 邢海花 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期212-222,293,共12页
针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MS... 针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MSRCR)增强算法对部分图像数据进行预处理,提高边缘细节模糊的图像清晰度,降低图像中的阴影干扰。使用轻量级网络PP-LCNet重置了识别模型中的特征提取网络,减少模型参数量。采用Ghost卷积模块轻量化特征融合网络,进一步降低计算量。为了弥补轻量化造成的模型性能损耗,在特征融合网络末端添加基于标准化的注意力模块(Normalization-based attention module, NAM),增强模型对杂草和玉米幼苗的特征提取能力。此外,通过优化主干网络注意力机制的激活函数来提高模型的非线性拟合能力。在自建数据集上进行实验,实验结果显示,与当前主流目标检测算法YOLO v5s以及成熟的轻量化目标检测算法MobileNet v3-YOLO v5s、ShuffleNet v2-YOLO v5s比较,轻量化后杂草识别模型内存占用量为6.23 MB,分别缩小54.5%、12%和18%;平均精度均值(Mean average precision, mAP)为97.8%,分别提高1.3、5.1、4.4个百分点。单幅图像检测时间为118.1 ms,达到了轻量化要求。在保持较高模型识别精度的同时大幅降低了模型复杂度,可为采用资源有限的移动端设备进行农田杂草识别提供技术支持。 展开更多
关键词 杂草识别 目标检测 YOLO v5s 量化特征提取网络 Ghost卷积模块 注意力机制
在线阅读 下载PDF
结合轻量化与多尺度融合的交通标志检测算法 被引量:3
6
作者 兰红 王惠钊 《计算机工程》 CAS CSCD 北大核心 2024年第10期381-392,共12页
交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义。针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与... 交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义。针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与多尺度融合的交通标志检测网络架构M-YOLO,构建M-YOLOs模型来应对高精度需求的检测任务,并调整网络深度得到更轻量化的M-YOLOn模型来解决不同环境下的检测需求。首先针对交通标志目标尺寸小、图像特征流失的问题,通过增加小目标检测层,保留更多的特征信息,提高网络对于小目标的特征学习能力。提出高效多尺度特征金字塔融合网络MPANet,将浅层特征图进行降维与跳跃连接,从而融合更多的图像特征信息。然后提出融合稀疏注意力和空间注意力的BRSA注意力模块,有效提取全局和局部的位置信息,减少复杂背景下对于关键信息的干扰。最后设计两种轻量高效的BBot模块和C2fGhost模块,以提高模型运算速度并减少参数量。实验结果表明,M-YOLO相较于YOLOv8,参数量降低约1/3。在TT100K数据集和GTSDB数据集上,M-YOLOs检测精度分别提升了9.7和2.1个百分点,M-YOLOn检测精度分别提升了14.5和2.6个百分点,在轻量化的同时具备更高的检测效果。M-YOLO架构解决了浅层特征图在特征提取过程中信息丢失的问题,并显著降低模型特征提取过程中冗余的计算开销,在实景采集的数据集上证实效果有效,表明在交通标志检测任务中具有应用价值。 展开更多
关键词 卷积神经网络 量化模型 目标检测 注意力模块 多尺度融合
在线阅读 下载PDF
基于MDL-U2-Net的盆底超声图像轻量级分割及参数测量
7
作者 刘孝保 甘博敏 +1 位作者 姚廷强 申吉泓 《计算机辅助设计与图形学学报》 北大核心 2025年第2期277-292,共16页
准确地分割超声图像中盆底区域,是实现盆底疾病计算机辅助诊断的重要环节.针对盆底形态复杂、边界模糊、分割算法参数量庞大以及参数测量精度有限等问题,搭建了一种轻量级语义分割网络MDL-U2-Net并提出修补算法AC-F.首先,对基准U2-Net... 准确地分割超声图像中盆底区域,是实现盆底疾病计算机辅助诊断的重要环节.针对盆底形态复杂、边界模糊、分割算法参数量庞大以及参数测量精度有限等问题,搭建了一种轻量级语义分割网络MDL-U2-Net并提出修补算法AC-F.首先,对基准U2-Net进行结构优化和通道数调整,以有效地降低模型参数量;其次,融入复合损失函数以缓解训练损失波动并提升边界保持能力,提高网络对模糊边界的分割准确性;之后,提出深度非对称多尺度混洗卷积模块,以捕获特征空间采样的位置偏移信息,弥补轻量网络感受野不足和特征提取能力较弱的缺陷,提高网络对盆底复杂形态的建模能力;最后,采用修补算法对分割盆底进行精细化填补,以提高盆底完整性和参数测量的精度.在自制数据集上的实验结果表明,MDL-U2-Net对盆底分割的Jaccard,Recall和HD95指标分别达到91.226%,93.589%和1.074,与基准U2-Net相比,模型参数量缩减了94.37个百分点;此外,经AC-F算法处理后的区域面积测量百分误差降至1.25%,ICC达到0.998且有95%(76/80)的数据在95%LoA内,能够实现轻量级分割和精确参数测量. 展开更多
关键词 盆底超声图像 量化 复合损失函数 深度非对称通道混洗卷积模块 参数测量
在线阅读 下载PDF
基于注意力机制轻量化模型的植物病害识别方法 被引量:1
8
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积块注意力模块(CBAM)注意力机制 卷积核倒置残差结构(IRBCKS)模块 植物病害 量化网络
在线阅读 下载PDF
基于挤压激励的轻量化注意力机制模块 被引量:11
9
作者 吕振虎 许新征 张芳艳 《计算机应用》 CSCD 北大核心 2022年第8期2353-2360,共8页
针对向卷积神经网络(CNN)中嵌入注意力机制模块以提高模型应用精度导致参数和计算量增加的问题,提出基于挤压激励的轻量化高度维度挤压激励(HD-SE)模块和宽度维度挤压激励(WD-SE)模块。为了充分利用特征图中潜在的信息,HD-SE对卷积层输... 针对向卷积神经网络(CNN)中嵌入注意力机制模块以提高模型应用精度导致参数和计算量增加的问题,提出基于挤压激励的轻量化高度维度挤压激励(HD-SE)模块和宽度维度挤压激励(WD-SE)模块。为了充分利用特征图中潜在的信息,HD-SE对卷积层输出的特征图在高度维度上进行挤压激励操作,获得高度维度上的权重信息;而WD-SE在宽度维度上进行挤压激励操作,以得到特征图宽度维度上的权重信息;然后,将得到的权重信息分别应用于对应维度的特征图张量,以提高模型的应用精度。将HD-SE与WD-SE分别嵌入VGG16、ResNet56、MobileNetV1和MobileNetV2模型中,在CIFAR10和CIFAR100数据集上进行的实验结果表明,与挤压激励(SE)模块、协调注意力(CA)模块、卷积块注意力模块(CBAM)和高效通道注意力(ECA)模块等先进的注意力机制模块相比,HD-SE与WDSE在向网络模型中增加的参数和计算量更少的同时得到的精度相似或者更高。 展开更多
关键词 卷积神经网络 挤压激励 量化 多维度 注意力机制模块
在线阅读 下载PDF
基于参数轻量化的井下人体实时检测算法 被引量:6
10
作者 董昕宇 师杰 张国英 《工矿自动化》 北大核心 2021年第6期71-78,共8页
针对现有井下人员目标检测方法因网络较深、计算量庞大而不能达到实时检测效果的问题,提出了一种基于参数轻量化的井下人体实时检测算法。采用深度可分离卷积模块和倒置残差模块构建轻量级特征提取网络:通过深度可分离卷积压缩参数量和... 针对现有井下人员目标检测方法因网络较深、计算量庞大而不能达到实时检测效果的问题,提出了一种基于参数轻量化的井下人体实时检测算法。采用深度可分离卷积模块和倒置残差模块构建轻量级特征提取网络:通过深度可分离卷积压缩参数量和运算量,提升特征提取网络的运算速度;倒置残差模块通过更高维度的张量来提取足够多的信息,保证特征提取网络的精确度。结合轻量级特征提取网络和SSD多尺度检测方法建立井下人体实时检测模型,该模型在轻量级倒置残差特征提取网络的基本结构上增添传统卷积层至27层进行卷积操作,其中6层特征图被抽取进行多尺度预测,测试结果表明,该模型的大小为18 MB,帧率约为35帧/s,性能优于常用的VGG16+Faster R-CNN模型和VGG16+多尺度检测模型。为适应井下特定环境的目标检测需求,设计了基于Faster R-CNN的人体数据半自动标注方法,可显著减少人工工作量,提高井下人体检测精度。利用矿工服装颜色信息对检测结果框进行二次筛选,剔除将背景检测为人体的误检框。测试结果表明,该算法实现了采煤工作面人员实时定位检测及框选,精度达92.86%,召回率为98.11%,有效解决了井下人员漏检及误检问题。 展开更多
关键词 采煤工作面 井下人体实时检测 深度可分离卷积模块 倒置残差模块 参数量化 多尺度检测 半自动标注
在线阅读 下载PDF
基于轻量级改进的YOLOv8水下目标检测模型 被引量:2
11
作者 周志耀 马常霞 +2 位作者 杨丽莎 仲兆满 胡文彬 《电子测量技术》 北大核心 2024年第19期181-189,共9页
在恶劣和多变的水下环境中工作的设备是进行水下研究和开发的基本保障。现阶段的水下目标检测模型参数量和计算量过大,在资源有限的水下设备上部署受限。为解决水下检测模型参数量和计算量过大问题,提出一种轻量级的水下目标检测模型RCE... 在恶劣和多变的水下环境中工作的设备是进行水下研究和开发的基本保障。现阶段的水下目标检测模型参数量和计算量过大,在资源有限的水下设备上部署受限。为解决水下检测模型参数量和计算量过大问题,提出一种轻量级的水下目标检测模型RCE-YOLO。首先,利用RFAConv的空间注意力权重来改进CBS处理接受域信息的能力和提升C2f对空间特征信息融合的能力,增强模型对小密集目标的检出能力。其次,融合CCFM与Dysample模块,该融合模块能够更有效的利用不同尺度信息并通过内部的点采样方法减少原先采样产生的模糊和失真。最后,在SPPF前向传播过程中融合高效多尺度注意力机制,该机制使得模型重点关注水下目标关键信息,降低误检率和错检率。实验结果表明,改进的轻量级模型在数据集DUO上进行验证,mAP50、mAP50:90值分别达到83.6%、64.2%,相较于YOLOv8基准模型mAP50、mAP50:90值分别提升了1.4%、1.2%,参数量和计算量分别下降了32.3%、0.9 G。相较于其他目标检测模型满足了恶劣多变环境下的水下目标检测需求,为水下设备轻量级部署奠定基础。 展开更多
关键词 水下目标检测 量化 RFA卷积模块 CCFM模块 注意力机制
在线阅读 下载PDF
基于改进YOLOv8n的手机屏幕瑕疵检测算法:PGS-YOLO 被引量:2
12
作者 周思瑜 徐慧英 +4 位作者 朱信忠 黄晓 盛轲 曹雨淇 陈晨 《计算机工程》 北大核心 2025年第5期326-339,共14页
手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出... 手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出一种以YOLOv8n作为基准模型的PGS-YOLO算法。PGS-YOLO通过增加一个专门的微小目标检测头,并结合SeaAttention注意力模块,有效提升对小目标的探测能力;将骨干网络和特征融合网络分别融入PConv与GhostNetV2轻量化模块,在保证精度的同时降低模型的参数量,提高瑕疵检测的速度与效率。实验结果表明,在北京大学手机屏幕表面瑕疵数据集中,相较于YOLOv8n,PGS-YOLO算法的mAP@0.5提升了2.5百分点,mAP@0.5∶0.95提升了2.2百分点,在手机屏幕瑕疵检测过程中不仅能对大片的瑕疵做到精准检测,还能对小瑕疵保持一定的准确度。此外,检测性能优于YOLOv5n、YOLOv8s等大部分YOLO系列算法。同时,参数量仅为2.0×10^(6),小于YOLOv8n,满足工业场景对手机屏幕瑕疵检测的需求。 展开更多
关键词 YOLOv8n模型 手机屏幕瑕疵检测 小目标检测 部分卷积 GhostNetV2量化模块 挤压增强轴向注意力
在线阅读 下载PDF
隧道环境下基于深度学习的轻量级安全帽检测方法 被引量:4
13
作者 高方玉 解玉文 +1 位作者 张正刚 王道累 《现代电子技术》 2023年第14期147-151,共5页
隧道施工现场人员不按规定佩戴安全帽是事故发生的主要原因之一,使用安全帽检测算法能有效监督作业平台上所有人员安全帽佩戴的情况,及时作出风险预警,降低安全事故发生的可能。然而,工业上常用的安全帽检测算法计算复杂度较高,很难适... 隧道施工现场人员不按规定佩戴安全帽是事故发生的主要原因之一,使用安全帽检测算法能有效监督作业平台上所有人员安全帽佩戴的情况,及时作出风险预警,降低安全事故发生的可能。然而,工业上常用的安全帽检测算法计算复杂度较高,很难适用于隧道环境中的嵌入式移动设备,已有轻量级算法又很难在隧道光线差、背景复杂的条件下保持检测精确度。针对上述问题,文中提出一种基于改进YOLO_v3的轻量级安全帽检测算法,构建运算量较低的卷积模块LW_Conv,并以此改造主干网和特征金字塔。实验结果表明,改进算法的FLOPs约为YOLO_v3的10%,平均正确率(AP)比Tiny_YOLOv3高2%。 展开更多
关键词 安全帽检测 轻量化卷积模块lw_conv 隧道环境 改进YOLO_v3算法 深度学习 目标检测
在线阅读 下载PDF
面向视障人群的室内视觉辅助算法的研究
14
作者 欧阳玉旋 张荣芬 +1 位作者 刘宇红 彭垚潘 《激光技术》 北大核心 2025年第2期166-174,共9页
为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效... 为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效层聚合网络(ELAN),大幅度降低模型参数量;构建了一个全新的高性能轻量化模块(即C2f-全局注意力模块),综合考虑全局和局部特征信息,更好地捕捉节点的上下文信息;然后引入快速空间金字塔池化和幽灵瓶颈(SPPF-GB)模块,对特征进行重组和压缩,以融合不同尺度的特征信息、增强特征的表达能力;最后在头部引入可变形卷积(DCN),增强感受野的表达能力,以捕获目标周围更细粒度的目标结构和背景信息。结果表明,改进后的模型参数量下降了20.33%,模型大小下降了18.70%,平均精度mAP@0.50和mAP@0.50~0.95分别提升了1.2%和3.3%。该网络模型在保证轻量化的同时,检测精度得到了大幅度的提升,更利于室内场景目标检测算法实际应用的部署。 展开更多
关键词 图像处理 量化 幽灵瓶颈模块 C2f-全局注意力模块 多尺度特征融合 可变形卷积 YOLOv7-tiny网络模型
在线阅读 下载PDF
基于RDN-YOLO的自然环境下水稻病害识别模型研究 被引量:10
15
作者 廖娟 刘凯旋 +3 位作者 杨玉青 严从宽 张爱芳 朱德泉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期233-242,共10页
针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO)。以YOLO v5为基本框架,在主... 针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO)。以YOLO v5为基本框架,在主干网络的特征提取阶段嵌入跨阶段部分网络融合模块(C2f),增强模型对病害特征的感知能力,并引入空间深度转换卷积(SPDConv),扩展模型的感受野,进一步提升模型对小病斑特征提取能力;在颈部网络嵌入SPDConv结构,并利用轻量级卷积GsConv替换部分标准卷积,提高颈部网络对病害部位的定位和类别信息预测的准确性及推理速度;以穗瘟病、叶瘟病、胡麻斑病、稻曲病和白枯病5种常见水稻病害为研究对象,在自然环境下采集水稻病害图像,制作水稻病害数据集,进行模型训练与测试。实验结果表明,本文模型病害检测精确率高达94.2%,平均精度均值达93.5%,模型参数量为8.1 MB;与YOLO v5、Faster R-CNN、YOLO v7、YOLO v8模型相比,模型参数量略大于YOLO v5,但平均精度均值最高约高12.2个百分点,在一定程度上减轻模型复杂度的同时获得良好的水稻病害识别效果。 展开更多
关键词 水稻病害识别 YOLO v5 跨阶段部分网络融合模块 空间深度转换卷积 量化
在线阅读 下载PDF
基于反向瓶颈和LCBAM设计的X光违禁品检测 被引量:8
16
作者 董乙杉 郭靖圆 +2 位作者 李明泽 孙嘉傲 卢树华 《计算机科学与探索》 CSCD 北大核心 2024年第5期1259-1270,共12页
针对X光违禁品图像姿态与角度变化易漏检误检及困难样本检测准确率低等问题,以YOLOv5网络为基线模型,提出一种融合了反向瓶颈结构和轻量化卷积块注意力模块设计的违禁品检测模型。在主干网络采用反向瓶颈结构设计注重细节特征信息,改进... 针对X光违禁品图像姿态与角度变化易漏检误检及困难样本检测准确率低等问题,以YOLOv5网络为基线模型,提出一种融合了反向瓶颈结构和轻量化卷积块注意力模块设计的违禁品检测模型。在主干网络采用反向瓶颈结构设计注重细节特征信息,改进网络应对检测目标大角度变化问题;采用轻量化卷积块注意力机制抑制复杂背景干扰,降低模型参数量;此外,采用高斯误差线性单元激活函数和改进的置信度损失函数增强模型的非线性表达能力,加大对置信度预测的惩罚力度,优化网络对困难样本的检测性能。所提模型在三个大型公开数据集OPIXray、SIXray、HiXray上进行训练和测试,mAP分别达到了91.9%、93.4%和82.2%。结果表明,所提模型能够有效解决基线模型应对X光违禁品角度变化问题,具有较高的检测准确性和稳健性。 展开更多
关键词 X光图像 违禁品检测 反向瓶颈 量化卷积块注意力模块(LCBAM)
在线阅读 下载PDF
基于改进的Yolov5的无人机图像小目标检测 被引量:9
17
作者 何宇豪 易明发 +1 位作者 周先存 王冠凌 《智能系统学报》 CSCD 北大核心 2024年第3期635-645,共11页
为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采... 为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采用GhostConv卷积模块、GhostBottleneckC3模块替换部分Conv模块和C3模块用以提取丰富特征和冗余特征以提高模型效率;引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)结构,用以提高对小目标的检测精度;在主干网络和颈部网络中引入轻量化的卷积块注意力模块(convolutional block attention module,CBAM),关注重要特征并抑制不必要的特征,增强小目标特征表达能力;使用Soft-NMS算法来替换NMS,因此降低了小目标在密集场景下的漏检率。通过在VisDrone2019数据集上的实验结果表明,集成了所有改进的方法后的Yolov5_GBCS算法,不仅提高了检测精度,而且有效地提高了检测速度,模型的mAP从38.5%提高到43.2%,检测速度也从53 f/s提高到59 f/s。Yolov5_GBCS算法可以有效地实现无人机航拍图像中小目标识别。 展开更多
关键词 图像处理 GhostConv卷积模块 双向特征金字塔网络 卷积块注意力模块 Soft双向特征金字塔网络 量化模型 小目标检测 VisDrone数据集
在线阅读 下载PDF
基于多任务学习的人脸属性识别方法 被引量:7
18
作者 李亚 张雨楠 +2 位作者 彭程 杨俊钦 刘淼 《计算机工程》 CAS CSCD 北大核心 2020年第3期229-236,共8页
针对传统深度卷积神经网络模型复杂、识别速度慢的问题,提出一种基于多任务学习的人脸属性识别方法。通过轻量化残差模块构建基础网络,根据属性类之间的关联关系设计共享分支网络,以大幅减少网络参数和计算开销。以多任务学习的方式联... 针对传统深度卷积神经网络模型复杂、识别速度慢的问题,提出一种基于多任务学习的人脸属性识别方法。通过轻量化残差模块构建基础网络,根据属性类之间的关联关系设计共享分支网络,以大幅减少网络参数和计算开销。以多任务学习的方式联合优化各分支网络与基础网络的参数,利用关联属性间的共同特征实现人脸属性识别。采用带权重的交叉熵作为损失函数监督训练网络模型,改善正负样本数不均衡问题。在公开数据集CelebA上的实验结果表明,该方法的识别错误率低至8.45%,空间开销仅2.7 MB,在CPU上每幅图预测时间低至15ms,方便部署在资源有限的移动或便携式设备上,具有实际应用价值。 展开更多
关键词 人脸属性识别 量化残差模块 深度卷积神经网络 模型压缩 多任务学习
在线阅读 下载PDF
基于改进ShuffleNet V2模型的苹果叶部病害识别及应用 被引量:17
19
作者 张旭 周云成 +1 位作者 刘忠颖 李昕泽 《沈阳农业大学学报》 CAS CSCD 北大核心 2022年第1期110-118,共9页
苹果生长过程中容易受到病害影响而减产,造成经济损失。大型卷积神经网络可准确识别出苹果病害,但移动设备有限的计算资源限制了该类网络在其上的具体应用。轻量级卷积神经网络可运行在移动端,并能够实现病害的实时识别,但其识别精度往... 苹果生长过程中容易受到病害影响而减产,造成经济损失。大型卷积神经网络可准确识别出苹果病害,但移动设备有限的计算资源限制了该类网络在其上的具体应用。轻量级卷积神经网络可运行在移动端,并能够实现病害的实时识别,但其识别精度往往不如前者。为解决该问题,在轻量级卷积神经网络ShuffleNet V2基础上,通过调整基本残差单元结构和网络宽度,同时引入卷积块注意模块(convolutional block attention module,CBAM),提出了改进型ShuffleNet#苹果叶部病害诊断模型。以苹果疮痂病、黑腐病、锈病、健康叶片为研究对象,收集简单和复杂背景图像各2000张,通过数据增广将其扩充至40000张,构建苹果叶部病害图像数据集,应用该数据集,对苹果叶部病害诊断模型进行训练和测试。以识别准确率、模型复杂度、平均推理时间等为判别标准,并与多个现有卷积神经网络模型进行比较。结果表明:改进后的模型能有效地识别出上述2种不同背景的4类图像,在测试集上识别准确率达到98.95%,移动端单张图像的平均推理时间为39.38ms。相较于大型的ResNet101网络,该模型在准确率上仅降低0.05%,但平均推理时间缩减87.94%,在识别速度和精度上获得了较好的平衡。基于该模型,开发了一款面向Android移动端的苹果叶部病害识别应用,测试结果表明,该应用能够满足果园内上述3种病害和健康叶片的实时识别需求,可为设计高效、轻量的病害诊断模型提供思路和参考。 展开更多
关键词 病害识别 ShuffleNetV2 量化 卷积块注意模块 ANDROID
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部