期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进联合分布适应的轴承智能故障诊断方法 被引量:5
1
作者 潘晓博 葛鲲鹏 +2 位作者 钱孟浩 赵衍 董飞 《机电工程》 CAS 北大核心 2023年第9期1354-1362,共9页
在轴承故障诊断过程中,存在缺乏足量故障样本、变工况下信号分布差异等问题。虽然基于机器学习和深度学习方法的智能故障诊断方法的运用取得了许多成果,但该方法在应用过程中仍面临一些挑战,阻碍了智能故障诊断方法在实际工业场景下的... 在轴承故障诊断过程中,存在缺乏足量故障样本、变工况下信号分布差异等问题。虽然基于机器学习和深度学习方法的智能故障诊断方法的运用取得了许多成果,但该方法在应用过程中仍面临一些挑战,阻碍了智能故障诊断方法在实际工业场景下的应用。为此,提出了一种基于改进联合分布适应的轴承智能故障诊断方法(BIFD-IJDA)。首先,利用小波包变换对振动信号进行了分解与重构,再计算了重构信号的统计参数,构成了原始特征集;然后,设计了基于特征重要度与KL散度的迁移特征选取方法,对各统计参数特征进行了量化评估;采用了改进联合分布适应方法,对源域和目标域特征集进行了分布适应处理,降低了域间分布差异;最后,利用源域特征样本训练的故障诊断模型预测了目标域样本故障类别,采用美国凯斯西储大学实验台和机械故障模拟(MFS)实验台的轴承故障数据,开展了不同工况下的故障诊断实验。实验结果表明:该故障诊断方法在2种轴承故障数据下取得的最大故障诊断准确率分别为100%和96.29%,明显优于其他对比模型。研究结果表明:该故障诊断方法具有应用于实际工业场景的潜力。 展开更多
关键词 轴承智能故障诊断变工况 故障样本数量不足 改进联合分布适应 迁移特征 邻域保持嵌入 迁移成分分析
在线阅读 下载PDF
一种基于双向长短期记忆结构与多尺度卷积结构融合的轴承智能故障诊断方法 被引量:17
2
作者 欧阳励 何水龙 +2 位作者 朱良玉 胡超凡 蒋占四 《振动与冲击》 EI CSCD 北大核心 2022年第19期179-187,共9页
轴承作为旋转机械中最易损耗的核心基础部件之一,是机械装备的重点监测对象。针对现有轴承智能故障诊断模型存在的对数据信息挖掘片面性及利用率低等问题,构建了一种基于双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)结... 轴承作为旋转机械中最易损耗的核心基础部件之一,是机械装备的重点监测对象。针对现有轴承智能故障诊断模型存在的对数据信息挖掘片面性及利用率低等问题,构建了一种基于双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)结构与多尺度卷积结构融合的深度学习网络模型。为了增强模型的分类性能以及提高模型对实际工程环境的贴合度,数据集中各类故障数据的数据量为非等量;然后将数据集通过BLSTM结构来获取具有对称性的数据特征,从而减少模型对前后故障信息记忆的紊乱、增强信息利用率,接着通过多尺度卷积结构对数据特征进行多角度理解与交流,防止特征提取片面化,同时还能增强模型的抗噪性能;最后通过全连接网络实现智能分类。将所提模型分别对深沟球轴承与圆柱滚子轴承故障数据进行处理分析,结果表明该智能模型具有较高的准确度与实用性。 展开更多
关键词 双向长短期记忆 多尺度卷积 深度学习 轴承智能故障诊断
在线阅读 下载PDF
采用多层次一致性和半监督深度网络的轴承域适应故障诊断方法
3
作者 沈建军 于树源 +1 位作者 贾峰 蒋昭宇 《机电工程》 北大核心 2025年第2期267-276,共10页
在滚动轴承的故障诊断中,深度学习智能故障诊断的成功很大程度上依赖于充足的标记数据;然而,实际的情况是,收集大量标记数据常常面临困难和高昂成本,而大量未标记的数据则未被有效利用。针对这一难题,提出了一种基于多层次一致性半监督... 在滚动轴承的故障诊断中,深度学习智能故障诊断的成功很大程度上依赖于充足的标记数据;然而,实际的情况是,收集大量标记数据常常面临困难和高昂成本,而大量未标记的数据则未被有效利用。针对这一难题,提出了一种基于多层次一致性半监督深度网络(MLC-SDN)的滚动轴承智能故障诊断方法。首先,将轴承原始信号经过数据预处理转为二维时频图,建立了特征提取器模块,利用深度卷积网络将轴承样本映射到高维特征空间;然后,在域间层面,采用基于样本的最优传输方法,利用目标样本不同视图的优缺点,稳健准确地对齐源域和目标域;在样本层面上,将弱增强视图的预测设置为强增强视图的伪标签,以保证一致性,同时,将非目标类的预测分布纳入优化目标,避免其与目标类的竞争,从而提高了伪标签生成的预测置信度;最后,为了验证MLC-SDN的有效性,利用三种轴承数据集进行了对比实验。研究结果表明:该方法在不同数据集上均取得了预测精度超过95%的结果。MLC-SDN方法不仅可以充分利用有限标记数据,同时在处理未标记数据和实现高精度故障诊断方面具有广泛的适用性。 展开更多
关键词 轴承智能故障诊断 多层次一致性 半监督深度网络 领域自适应 伪标签 一致性正则化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部