期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
局域均值分解下基于LQPSO-LSSVM的轴承故障诊断策略
1
作者
邓锦途
刘少华
+5 位作者
林炳钿
黄展鸿
卢洁莹
程美娟
钱梓涵
贾瑞昌
《机电工程》
北大核心
2025年第11期2149-2157,共9页
轴承在低转速工况下,容易出现轴承故障的微弱信号和强信号难以分离的情况,从而导致其故障的诊断精度较低,为此,提出了一种局域均值分解(LMD)下基于Levy飞行改进量子粒子群(LQPSO)优化最小二乘支持向量机(LSSVM)的轴承故障诊断方法。首先...
轴承在低转速工况下,容易出现轴承故障的微弱信号和强信号难以分离的情况,从而导致其故障的诊断精度较低,为此,提出了一种局域均值分解(LMD)下基于Levy飞行改进量子粒子群(LQPSO)优化最小二乘支持向量机(LSSVM)的轴承故障诊断方法。首先,对采集得到的数据进行了LMD分解,并利用相关系数法进行了信号筛选重构,计算了重构信号的分段能量熵,构成了故障诊断特征向量;然后,针对Levy飞行的随机跳跃改进了量子粒子群优化算法,解决了其容易陷入局部收敛的问题,并将其用于搜索LSSVM的最优核参数,克服了人为设定核参数不精确、效率低等缺点,建立了基于改进量子粒子群优化最小二乘支持向量机的LQPSO-LSSVM模型;最后,将该LQPSO-LSSVM诊断方法应用到轴承故障诊断中,对其有效性进行了验证。研究结果表明:该方法在复杂工况下的诊断精度达95%以上,较传统PSO-LSSVM和QPSO-LSSVM得到了明显的提高,具备优异的故障分类精度和诊断鲁棒性。该方法为低转速工况下的轴承故障诊断提供了一种有效的解决方案。
展开更多
关键词
轴承故障诊断模型
低转速工况
微弱信号
局域均值分解
莱维飞行
量子粒子群优化算法
最小二乘支持向量机
在线阅读
下载PDF
职称材料
基于MGWO-SCN的滚动轴承故障诊断方法
被引量:
4
2
作者
冯铃
张楚
刘伟渭
《机电工程》
CAS
北大核心
2022年第10期1382-1389,共8页
为了提高滚动轴承故障诊断模型的鲁棒性和泛化能力,提出了一种基于改进灰狼算法优化随机配置网络(MGWO-SCN)的滚动轴承故障诊断模型。首先,在随机配置网络(SCN)中引入L2范数惩罚项,提高了SCN在实际应用中的泛化能力;然后,在灰狼算法(GWO...
为了提高滚动轴承故障诊断模型的鲁棒性和泛化能力,提出了一种基于改进灰狼算法优化随机配置网络(MGWO-SCN)的滚动轴承故障诊断模型。首先,在随机配置网络(SCN)中引入L2范数惩罚项,提高了SCN在实际应用中的泛化能力;然后,在灰狼算法(GWO)中融入差分进化机制,构建了改进灰狼算法(MGWO),并用其对SCN的惩罚项系数C进行了优化;最后,通过分析美国凯斯西储大学(CWRU)轴承振动信号数据集的频域特征信息,构造了基于频域特征参量的振动数据集;并分别用BP神经网络(BPNN)、极限学习机(ELM)和支持向量机(SVM)诊断模型,以及MGWO和粒子群优化算法(PSO)对所提模型进行了对比仿真测试。研究结果表明:在30次重复实验中,采用基于改进灰狼算法优化随机配置网络(MGWO-SCN)的方法,可以准确地识别出12种轴承运行状态,相比于BPNN、ELM和SVM轴承诊断方法,该方法的诊断平均准确率分别提高了7.27%、6.47%和8.67%;另外,MGWO-SCN在优化故障诊断模型方面具有更强的全局搜索能力,相比于GWO-SCN和PSO-SCN,该模型预测结果的偏差值更小,测试集准确率更高。
展开更多
关键词
旋转机械
滚动
轴承故障诊断模型
改进灰狼算法优化随机配置网络
鲁棒性
泛化能力
在线阅读
下载PDF
职称材料
题名
局域均值分解下基于LQPSO-LSSVM的轴承故障诊断策略
1
作者
邓锦途
刘少华
林炳钿
黄展鸿
卢洁莹
程美娟
钱梓涵
贾瑞昌
机构
华南农业大学工程学院
淄博齐翔腾达化工股份有限公司
山东理工大学管理学院
出处
《机电工程》
北大核心
2025年第11期2149-2157,共9页
基金
华南农业大学校企合作项目(h20230003)。
文摘
轴承在低转速工况下,容易出现轴承故障的微弱信号和强信号难以分离的情况,从而导致其故障的诊断精度较低,为此,提出了一种局域均值分解(LMD)下基于Levy飞行改进量子粒子群(LQPSO)优化最小二乘支持向量机(LSSVM)的轴承故障诊断方法。首先,对采集得到的数据进行了LMD分解,并利用相关系数法进行了信号筛选重构,计算了重构信号的分段能量熵,构成了故障诊断特征向量;然后,针对Levy飞行的随机跳跃改进了量子粒子群优化算法,解决了其容易陷入局部收敛的问题,并将其用于搜索LSSVM的最优核参数,克服了人为设定核参数不精确、效率低等缺点,建立了基于改进量子粒子群优化最小二乘支持向量机的LQPSO-LSSVM模型;最后,将该LQPSO-LSSVM诊断方法应用到轴承故障诊断中,对其有效性进行了验证。研究结果表明:该方法在复杂工况下的诊断精度达95%以上,较传统PSO-LSSVM和QPSO-LSSVM得到了明显的提高,具备优异的故障分类精度和诊断鲁棒性。该方法为低转速工况下的轴承故障诊断提供了一种有效的解决方案。
关键词
轴承故障诊断模型
低转速工况
微弱信号
局域均值分解
莱维飞行
量子粒子群优化算法
最小二乘支持向量机
Keywords
bearing fault diagnosis model
low speed working condition
weak signal
local mean decomposition(LMD)
Levy flight
quantum particle swarm optimization(QPSO)
least squares support vector machine(LSSVM)
分类号
TH133.3 [机械工程—机械制造及自动化]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于MGWO-SCN的滚动轴承故障诊断方法
被引量:
4
2
作者
冯铃
张楚
刘伟渭
机构
四川化工职业技术学院智能制造学院
西南大学人工智能学院
西南交通大学机械工程学院
出处
《机电工程》
CAS
北大核心
2022年第10期1382-1389,共8页
基金
国家自然科学青年科学基金资助项目(51705432)
中国博士后基金面上资助项目(2020M682506)
四川省科技计划项目(19YYJC0513)。
文摘
为了提高滚动轴承故障诊断模型的鲁棒性和泛化能力,提出了一种基于改进灰狼算法优化随机配置网络(MGWO-SCN)的滚动轴承故障诊断模型。首先,在随机配置网络(SCN)中引入L2范数惩罚项,提高了SCN在实际应用中的泛化能力;然后,在灰狼算法(GWO)中融入差分进化机制,构建了改进灰狼算法(MGWO),并用其对SCN的惩罚项系数C进行了优化;最后,通过分析美国凯斯西储大学(CWRU)轴承振动信号数据集的频域特征信息,构造了基于频域特征参量的振动数据集;并分别用BP神经网络(BPNN)、极限学习机(ELM)和支持向量机(SVM)诊断模型,以及MGWO和粒子群优化算法(PSO)对所提模型进行了对比仿真测试。研究结果表明:在30次重复实验中,采用基于改进灰狼算法优化随机配置网络(MGWO-SCN)的方法,可以准确地识别出12种轴承运行状态,相比于BPNN、ELM和SVM轴承诊断方法,该方法的诊断平均准确率分别提高了7.27%、6.47%和8.67%;另外,MGWO-SCN在优化故障诊断模型方面具有更强的全局搜索能力,相比于GWO-SCN和PSO-SCN,该模型预测结果的偏差值更小,测试集准确率更高。
关键词
旋转机械
滚动
轴承故障诊断模型
改进灰狼算法优化随机配置网络
鲁棒性
泛化能力
Keywords
rotating machinery
rolling bearing fault diagnosis model
modified gray wolf algorithm-stochastic configuration networks(MGWO-SCN)
robustness
generalization ability
分类号
TH133.33 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
局域均值分解下基于LQPSO-LSSVM的轴承故障诊断策略
邓锦途
刘少华
林炳钿
黄展鸿
卢洁莹
程美娟
钱梓涵
贾瑞昌
《机电工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于MGWO-SCN的滚动轴承故障诊断方法
冯铃
张楚
刘伟渭
《机电工程》
CAS
北大核心
2022
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部