Improving imaging quality of cone-beam CT under large cone angle scan has been an important area of CT imaging research. Considering the idea of conjugate rays and making up missing data, we propose a three-dimensiona...Improving imaging quality of cone-beam CT under large cone angle scan has been an important area of CT imaging research. Considering the idea of conjugate rays and making up missing data, we propose a three-dimensional(3D) weighting reconstruction algorithm for cone-beam CT. The 3D weighting function is added in the back-projection process to reduce the axial density drop and improve the accuracy of FDK algorithm. Having a simple structure, the algorithm can be implemented easily without rebinning the native cone-beam data into coneparallel beam data. Performance of the algorithm is evaluated using two computer simulations and a real industrial component, and the results show that the algorithm achieves better performance in reduction of axial intensity drop artifacts and has a wide range of application.展开更多
We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial c...We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51675437 and 51605389)Aeronautical Science Fund of China(No.2014ZE53059)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM5003)Fundamental Research Funds for the Central Universities of China(No.3102014KYJD022)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Nos.Z2016075 and Z2016081)
文摘Improving imaging quality of cone-beam CT under large cone angle scan has been an important area of CT imaging research. Considering the idea of conjugate rays and making up missing data, we propose a three-dimensional(3D) weighting reconstruction algorithm for cone-beam CT. The 3D weighting function is added in the back-projection process to reduce the axial density drop and improve the accuracy of FDK algorithm. Having a simple structure, the algorithm can be implemented easily without rebinning the native cone-beam data into coneparallel beam data. Performance of the algorithm is evaluated using two computer simulations and a real industrial component, and the results show that the algorithm achieves better performance in reduction of axial intensity drop artifacts and has a wide range of application.
基金supported by the National Natural Science Foundation of China (No. 11102224)the Fundamental Research Funds for the Central Universities of China(No. 2009QL05)
文摘We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed.