期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
用有限元方法分析电力变压器绕组轴向稳定性 被引量:29
1
作者 郭健 林鹤云 +1 位作者 徐子宏 金承祥 《高电压技术》 EI CAS CSCD 北大核心 2007年第11期209-212,共4页
针对电力变压器绕组轴向稳定性的计算方法中,"质量—弹簧—阻尼"集中参数法无法考虑绕组的弯曲变形和垫块的数量、宽度对轴向稳定性影响的问题,采用有限元的方法计算绕组各线饼短路情况下的电动力,以此作为绕组轴向振动的力... 针对电力变压器绕组轴向稳定性的计算方法中,"质量—弹簧—阻尼"集中参数法无法考虑绕组的弯曲变形和垫块的数量、宽度对轴向稳定性影响的问题,采用有限元的方法计算绕组各线饼短路情况下的电动力,以此作为绕组轴向振动的力载荷分析绕组的轴向稳定性,得出了绕组各线饼的位移分布,在绕组轴向振动分析中既考虑了垫块的材料属性,又兼顾了垫块沿周向分布的特点。结果表明,绕组在短路情况下既存在轴向平移,也存在弯曲变形,最大位移出现在绕组上下端部,通过增加绕组周围垫块的数量和宽度可以减小绕组的变形量。 展开更多
关键词 变压器 轴向稳定性 有限元 垫块 轴向平移 弯曲变形
在线阅读 下载PDF
Coupled pile soil interaction analysis in undrained condition 被引量:1
2
作者 M.Y.Fattah F.A.Salman +1 位作者 Y.J.Al-Shakarchi A.M.Raheem 《Journal of Central South University》 SCIE EI CAS 2013年第5期1376-1383,共8页
The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the so... The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the soil will change. In this work, the finite element method is utilized as a tool for the analysis of pile-soil systems in undrained condition. The computer program CRISP was developed to suit the problem requirements. CRISP uses the finite element technique and allows predictions to be made of ground deformation using critical state theories. Eight-node isoparametric element was added to the program in addition to the slip element. A pile loading problem was solved in which the pile-soil system is analyzed in undrained condition. The pile is modelled as elastic-plastic material, while the soil is assumed to follow the modified Cam clay model. During undrained loading condition, the settlement values increase by 22% when slip elements are used. The surface settlement increases by about three times when the load is doubled and the surface settlement at all points increases when using slip elements due to the mode of motion which allows smooth movement of the adjacent soil with respect to the pile. The vertical displacement increases as the distance decreases from the pile and negligible values are obtained beyond 10D (where D is the pile diameter) from the center of the pile and these values are slightly increased when slip elements are used. The vertical effective stress along a section at a distance D from the pile center is approximately the same for all load increments and lower values of effective vertical stress can be obtained when slip elements are used. 展开更多
关键词 PILE finite element coupled analysis undrained condition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部