期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用深度学习构建自动分类模型以辅助髌骨轴位X线片的图像质控
1
作者 额·图娅 王岑 +3 位作者 黄嘉豪 张耀峰 张晓东 王霄英 《放射学实践》 CSCD 北大核心 2022年第7期884-888,共5页
目的:利用深度学习方法训练髌骨轴位X线片图像质量控制的自动分类模型。方法:回顾性收集髌骨轴位X线片,由两位专家将髌骨轴位X线片分为不同数据组以训练模型,分别为:术后/非术后共175例(术后96例,非术后79例),侧别共735例(左侧419例,右... 目的:利用深度学习方法训练髌骨轴位X线片图像质量控制的自动分类模型。方法:回顾性收集髌骨轴位X线片,由两位专家将髌骨轴位X线片分为不同数据组以训练模型,分别为:术后/非术后共175例(术后96例,非术后79例),侧别共735例(左侧419例,右侧316例),图像质量共453例(图像质量不合格246例,图像质量合格207例)。上述每组数据均按8:1:1的比例随机分为训练集、调优集和测试集,即:术后/非术后为136例、21例、18例,侧别586例、75例、74例,图像质量为362例、46例、45例。训练HRNet模型对上述三组图像进行自动分类,应用混淆矩阵评价模型分类预测效能,以符合率为评价指标。结果:测试集中,三组图像分类模型的预测符合率依次为:术后/非术后94.4%(17/18)、侧别98.6%(73/74)、图像质量91.1%(41/45)。结论:基于深度学习训练的分类模型对髌骨轴位X线片进行图像质量控制效能良好,有利于工作流程的优化及后续对接AI诊断模型。 展开更多
关键词 髌骨 轴位x线 深度学习 质量控制 结构化报告
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部