期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于时序分解和软阈值时间卷积的交通流预测
1
作者
项新建
袁天顺
+1 位作者
何亚强
汪成立
《浙江大学学报(工学版)》
北大核心
2025年第7期1353-1361,共9页
交通流数据的高度非线性、强时间依赖性、特征冗余和噪声会降低模型的预测精度,为此提出融合自适应噪声完备集合经验模态分解(CEEMDAN)和软阈值时间卷积网络(STTCN)的短时交通流预测算法. CEEMDAN算法将历史交通流数据分解为高频和低频...
交通流数据的高度非线性、强时间依赖性、特征冗余和噪声会降低模型的预测精度,为此提出融合自适应噪声完备集合经验模态分解(CEEMDAN)和软阈值时间卷积网络(STTCN)的短时交通流预测算法. CEEMDAN算法将历史交通流数据分解为高频和低频成分.设计时间戳编码处理时间信息,使用最大信息系数(MIC)分析时间和天气特征与分解成分的相关性.将最相关特征与对应高、低频成分输入STTCN.引入软阈值机制增强高噪声数据的处理能力,软阈值参数由黏菌优化算法(SMA)调整,将预测得到的高、低频成分重构为交通流预测结果.在浙江省某高速公路数据集上,相较于基线模型,所提算法的均方误差、均方根误差和绝对偏差下降了54.97%、30.07%和34.39%.结果表明,所提算法能有效捕捉交通流的复杂动态.
展开更多
关键词
短时交通流预测
软阈值时间卷积网络
自适应噪声完备集合经验模态分解
时间
戳编码
最大信息系数
在线阅读
下载PDF
职称材料
题名
基于时序分解和软阈值时间卷积的交通流预测
1
作者
项新建
袁天顺
何亚强
汪成立
机构
浙江科技大学自动化与电气工程学院
浙江省交通运输科学研究院
出处
《浙江大学学报(工学版)》
北大核心
2025年第7期1353-1361,共9页
基金
浙江省交通运输厅科技计划项目(2023013)
浙江科技大学研究生科研创新基金资助项目(2023yjskc05)。
文摘
交通流数据的高度非线性、强时间依赖性、特征冗余和噪声会降低模型的预测精度,为此提出融合自适应噪声完备集合经验模态分解(CEEMDAN)和软阈值时间卷积网络(STTCN)的短时交通流预测算法. CEEMDAN算法将历史交通流数据分解为高频和低频成分.设计时间戳编码处理时间信息,使用最大信息系数(MIC)分析时间和天气特征与分解成分的相关性.将最相关特征与对应高、低频成分输入STTCN.引入软阈值机制增强高噪声数据的处理能力,软阈值参数由黏菌优化算法(SMA)调整,将预测得到的高、低频成分重构为交通流预测结果.在浙江省某高速公路数据集上,相较于基线模型,所提算法的均方误差、均方根误差和绝对偏差下降了54.97%、30.07%和34.39%.结果表明,所提算法能有效捕捉交通流的复杂动态.
关键词
短时交通流预测
软阈值时间卷积网络
自适应噪声完备集合经验模态分解
时间
戳编码
最大信息系数
Keywords
short-term traffic flow prediction
soft thresholding temporal convolutional network
complete ensemble empirical mode decomposition with adaptive noise
timestamp encoding
maximal information coefficient
分类号
U495 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于时序分解和软阈值时间卷积的交通流预测
项新建
袁天顺
何亚强
汪成立
《浙江大学学报(工学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部