针对多径信道下因多径衰落造成软扩频信号伪码周期难以估计的问题,提出了一种基于二次功率谱的多径软扩频信号伪码周期盲估计方法。首先,将一般的单径软扩频信号扩展到多径模型;然后,在多径软扩频信号模型的基础上计算信号的一次功率谱...针对多径信道下因多径衰落造成软扩频信号伪码周期难以估计的问题,提出了一种基于二次功率谱的多径软扩频信号伪码周期盲估计方法。首先,将一般的单径软扩频信号扩展到多径模型;然后,在多径软扩频信号模型的基础上计算信号的一次功率谱;其次,将求出的一次功率谱作为输入信号计算信号的二次功率谱,理论分析表明信号的二次功率谱在伪码周期整数倍处将会出现峰值谱线;最后,通过检测峰值谱线间的间距就可以实现多径软扩频信号的伪码周期估计。通过仿真实验表明,在伪码周期估计正确率为100%、伪码序列长度为127位和255位时,所提方法比时域相关法提高信噪比约1 d B和2 d B;在同一对比条件下,所需要的平均累加次数均少于时域相关法。实验结果表明,所提方法对伪码周期进行估计,在减少计算量的同时,还提高了估计的正确率。展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
文摘针对多径信道下因多径衰落造成软扩频信号伪码周期难以估计的问题,提出了一种基于二次功率谱的多径软扩频信号伪码周期盲估计方法。首先,将一般的单径软扩频信号扩展到多径模型;然后,在多径软扩频信号模型的基础上计算信号的一次功率谱;其次,将求出的一次功率谱作为输入信号计算信号的二次功率谱,理论分析表明信号的二次功率谱在伪码周期整数倍处将会出现峰值谱线;最后,通过检测峰值谱线间的间距就可以实现多径软扩频信号的伪码周期估计。通过仿真实验表明,在伪码周期估计正确率为100%、伪码序列长度为127位和255位时,所提方法比时域相关法提高信噪比约1 d B和2 d B;在同一对比条件下,所需要的平均累加次数均少于时域相关法。实验结果表明,所提方法对伪码周期进行估计,在减少计算量的同时,还提高了估计的正确率。
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。