The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with differ...The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles.展开更多
Spur gears are widely used in the power transmission mechanism of several machines.Due to the transmitted torque,spur gears experience high stresses which could cause gear tooth failure by surface pitting or root frac...Spur gears are widely used in the power transmission mechanism of several machines.Due to the transmitted torque,spur gears experience high stresses which could cause gear tooth failure by surface pitting or root fracture.Tip relief and other gear profile modification have been considered for reducing the induced stresses in the gear tooth.In this work,the influence of tip relief on stresses on a pair of identical spur gear was analyzed using commercial FEA software ANSYS,and formulae for estimating contact and bending stresses were derived.Three cases of gear sets were analyzed;a non-modified pair and another two sets with linear and parabolic tip relief profiles.The non-modified gear set frictionless contact stress was validated against the calculated AGMA pitting resistance,Hertzian contact stress and a reported contact stress value in the literature.The four methods agreed well with each other.Similarly,bending stress was also compared with the AGMA bending strength and Lewis bending stress for validation.Then,friction coefficient was varied from 0.0 to 0.3 with increment of 0.1.The gear contact stress increased up to 11%relative to the frictionless case,whereas bending stress decreased by 6%.Linear tip relief modification was carried out for increasing normalised tip relief values of 0.25 to 1.0 with increment of 0.25.The gear frictionless contact and bending stresses decreased by a maximum of 4%and 2%,respectively.Frictional contact stress increased by up to 7.1%and the bending stress is almost identical with the frictionless case.Parabolic tip relief was also carried out with similar normalised tip relief values.Frictionless contact stress decreased by 5%while frictional contact stress increased by up to 11.5%and the bending stress is also almost identical with the frictionless case.Finally,four formulae were introduced for estimating the contact and bending stresses for a tip modified spur gear.展开更多
A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, appli...A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.展开更多
The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic t...The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.展开更多
In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by...In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by adopting the method of combining kinematics and tribology, and the numerical analysis was applied to the fretting instability mechanism of gear shaft shoulder by introducing the friction instability damping ratio. The numerical results show that the main factors causing the unstable and vibrating gear shaft shoulder are the large tightening torque and too large static friction coefficient. The reasonable values of the static friction coefficient, the amount of interference and tightening torque can effectively mitigate the fretting instability phenomenon of gear shaft shoulder. The experimental results verify that damping plays a significant role in eliminating the vibration of gear shaft control system.展开更多
基金Projects(51905053,51805051)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-bshX0119)supported by the Chongqing Postdoctoral Science Foundation,China。
文摘The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles.
文摘Spur gears are widely used in the power transmission mechanism of several machines.Due to the transmitted torque,spur gears experience high stresses which could cause gear tooth failure by surface pitting or root fracture.Tip relief and other gear profile modification have been considered for reducing the induced stresses in the gear tooth.In this work,the influence of tip relief on stresses on a pair of identical spur gear was analyzed using commercial FEA software ANSYS,and formulae for estimating contact and bending stresses were derived.Three cases of gear sets were analyzed;a non-modified pair and another two sets with linear and parabolic tip relief profiles.The non-modified gear set frictionless contact stress was validated against the calculated AGMA pitting resistance,Hertzian contact stress and a reported contact stress value in the literature.The four methods agreed well with each other.Similarly,bending stress was also compared with the AGMA bending strength and Lewis bending stress for validation.Then,friction coefficient was varied from 0.0 to 0.3 with increment of 0.1.The gear contact stress increased up to 11%relative to the frictionless case,whereas bending stress decreased by 6%.Linear tip relief modification was carried out for increasing normalised tip relief values of 0.25 to 1.0 with increment of 0.25.The gear frictionless contact and bending stresses decreased by a maximum of 4%and 2%,respectively.Frictional contact stress increased by up to 7.1%and the bending stress is almost identical with the frictionless case.Parabolic tip relief was also carried out with similar normalised tip relief values.Frictionless contact stress decreased by 5%while frictional contact stress increased by up to 11.5%and the bending stress is also almost identical with the frictionless case.Finally,four formulae were introduced for estimating the contact and bending stresses for a tip modified spur gear.
基金Project(51175505)supported by the National Natural Science Foundation of China
文摘A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.
基金Project(2008AA11A116)supported by the National High Technology Research and Development Program of ChinaProject(9140A2011QT4801)supported by advanced research of the Weapon Equipment Key Fund Program,ChinaProject(61075002)supported by the Independent Subject of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of Hunan University,China
文摘In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by adopting the method of combining kinematics and tribology, and the numerical analysis was applied to the fretting instability mechanism of gear shaft shoulder by introducing the friction instability damping ratio. The numerical results show that the main factors causing the unstable and vibrating gear shaft shoulder are the large tightening torque and too large static friction coefficient. The reasonable values of the static friction coefficient, the amount of interference and tightening torque can effectively mitigate the fretting instability phenomenon of gear shaft shoulder. The experimental results verify that damping plays a significant role in eliminating the vibration of gear shaft control system.