In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid s...In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool.展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
基金Projects(51004082,51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the New Century Excellent Talents in University of ChinaProjects(12TD007,2011JQ0020)supported by Scientific Research Innovation Team Project of Sichuan and the Sichuan Youth Sci-tech Fund,China
文摘In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool.
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.