期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于转置卷积神经网络的路面裂缝识别算法 被引量:13
1
作者 刘奇 于斌 +1 位作者 孟祥成 张晓宇 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第12期124-132,共9页
为解决卷积神经网络(CNN)在二维路面灰度图像裂缝自动检测中存在的识别效率和精确度低的问题,首先提出了一套基于转置CNN层间特征融合的三阶段路面裂缝提取算法(该算法包括区域判定、图像分割、多层特征融合等模块);然后构建了分类-分... 为解决卷积神经网络(CNN)在二维路面灰度图像裂缝自动检测中存在的识别效率和精确度低的问题,首先提出了一套基于转置CNN层间特征融合的三阶段路面裂缝提取算法(该算法包括区域判定、图像分割、多层特征融合等模块);然后构建了分类-分割网络,训练了多个融合分类网络中间层和分割网络输出层的转置卷积网络,并与CrackNet进行了运行效果的对比。结果表明:当用于区域判定的分割网络CNN-Ⅰ的召回率最小值设置为0.95时,精确度为0.497,此时的阈值为0.003152,结合用于裂缝提取的分割网络CNN-Ⅱ的训练结果得出,分类-分割网络的精确度为0.78、召回率为0.73、F-1分数为0.75、计算一张图片的时间缩短到0.79 ms以内;多层特征融合方法提取裂缝信息更准确,保留了裂缝的连续性特征,实现了基于CNN的路面裂缝自动识别和提取的优化。 展开更多
关键词 转置卷积神经网络 路面裂缝识别 多层特征融合 分类-分割网络
在线阅读 下载PDF
基于人工神经网络的烟气及温度实时预测模型 被引量:5
2
作者 李伟 胡淋翔 +1 位作者 杨满江 刘晓平 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第3期5-12,共8页
为监测建筑火灾事故区域的危险程度,实现更加安全、高效的火灾应急救援,以通廊式建筑为研究对象,基于转置卷积神经网络及数值模拟方法开发1种可实时预测走廊位置处烟气扩散和温度分布的神经网络模型。首先,依托Python建立包含全连接、... 为监测建筑火灾事故区域的危险程度,实现更加安全、高效的火灾应急救援,以通廊式建筑为研究对象,基于转置卷积神经网络及数值模拟方法开发1种可实时预测走廊位置处烟气扩散和温度分布的神经网络模型。首先,依托Python建立包含全连接、转置卷积、反池化等在内的19层神经网络模型的整体架构;其次,建立包含99个火灾场景,共7920组图像数据的火场信息数据库用于模型训练;最后,使用测试集对模型进行可靠性验证。研究结果表明:烟气(温度)预测模型在不同火灾场景下的预测精度达到95%,训练完成后模型的预测时间一般为1~2 s。研究结果可为应急策略的快速制定提供数据参考。 展开更多
关键词 消防安全 转置卷积神经网络(TCNN) 数值模拟 烟气扩散 温度分布 实时预测
在线阅读 下载PDF
基于全卷积网络的FDD大规模MIMO系统CSI反馈 被引量:1
3
作者 杨媛媛 丁建军 《传感器与微系统》 CSCD 北大核心 2022年第3期87-90,共4页
在频分双工(FDD)大规模多输入多输出(MIMO)系统中,为了确保通信质量,用户设备(UE)需要将信道状态信息(CSI)反馈给基站(BS)。随着天线数量的增加,CSI反馈开销急剧增加,使得BS获得准确CSI变得困难。为了降低反馈开销,提高反馈质量,采用深... 在频分双工(FDD)大规模多输入多输出(MIMO)系统中,为了确保通信质量,用户设备(UE)需要将信道状态信息(CSI)反馈给基站(BS)。随着天线数量的增加,CSI反馈开销急剧增加,使得BS获得准确CSI变得困难。为了降低反馈开销,提高反馈质量,采用深度学习(DL)方法,提出一种基于全卷积网络的信道反馈网络MCMTNet,该网络由三部分构成。卷积神经网络(CNN)将CSI压缩。转置CNN和精细密集连接网络分别进行初始恢复和最终恢复。仿真结果表明:提出的MCMTNet的性能优于传统压缩感知方法和现有基于深度学习的网络CsiNet,MCMTNet可以处理任意维数的信道数据,且训练参数更少,复杂度更低。 展开更多
关键词 大规模MIMO CSI反馈 深度学习 卷积网络 卷积神经网络 转置卷积神经网络
在线阅读 下载PDF
融合深度学习算法的炉内燃烧温度场分布在线重建
4
作者 任世鹏 安元 +3 位作者 娄春 梅晟东 刘凯 陈新建 《化工进展》 北大核心 2025年第4期1923-1933,共11页
在锅炉恶劣测量环境下,为了保证热辐射成像技术对炉内燃烧温度场分布在线检测的持续有效性及可靠性,融合使用深度学习算法以获取炉内温度场分布。在对某电厂350MW四角切圆燃煤锅炉进行数据提取及计算后,获取包含机组运行参数和炉内燃烧... 在锅炉恶劣测量环境下,为了保证热辐射成像技术对炉内燃烧温度场分布在线检测的持续有效性及可靠性,融合使用深度学习算法以获取炉内温度场分布。在对某电厂350MW四角切圆燃煤锅炉进行数据提取及计算后,获取包含机组运行参数和炉内燃烧温度场分布的数据集并进行划分及预处理,进而分别建立并训练基于多层感知器(MLP)、长短时记忆(LSTM)和转置卷积神经网络(TCNN)的燃烧温度场预测模型。使用3种模型对不同负荷工况进行了炉内温度场预测及误差分析,并使用测试集对3种模型进行了评价指标计算及对比。结果表明:在变负荷运行范围内,TCNN模型对炉内温度场的泛化能力在3种模型中最佳,能够更准确预测炉内燃烧温度场分布;在3种模型中,TCNN模型对测试集的平均绝对误差和均方根误差降低至45.51K和59.73K,并且平均预测相对误差小于3.6%,满足工程应用需求,论证了该模型可用于弥补图像探头清洁期间不能获得炉内温度场的不足,进而确保其在炉内恶劣测量环境下在线检测炉内温度场的连续性及可靠性。 展开更多
关键词 燃煤锅炉 燃烧温度场 深度学习算法 转置卷积神经网络 热辐射成像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部