期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
TDC转置卷积硬件加速器的设计与优化
1
作者 王国庆 严利民 《西安电子科技大学学报》 北大核心 2025年第2期156-166,共11页
转置卷积在深度学习(Deep Learning, DL)任务中应用广泛,但是在小型快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network-small, FSRCNN-s)中已经成为推理阶段的主要性能瓶颈,因此设计高效的转置卷积硬件加... 转置卷积在深度学习(Deep Learning, DL)任务中应用广泛,但是在小型快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network-small, FSRCNN-s)中已经成为推理阶段的主要性能瓶颈,因此设计高效的转置卷积硬件加速器至关重要。基于转换转置卷积为卷积(Transforming Deconvolution to Convolution, TDC)算法,将步长为2的转置卷积软件推理流程转换为4路并行的直接卷积硬件实现,验证了不完美映射情况下算法和硬件加速器的正确性。完成转置卷积加速器设计后,选择FSRCNN-s×2网络进行端到端部署,采用软硬件协同设计和8位整数(Integer 8-bit, INT8)量化调度策略平衡转置卷积推理精度和速度之间的矛盾。实验结果表明,设计的转置卷积硬件加速器精度损失在0.5dB以内,相比CPU基线推理速度缩短到17ms。对比其他转置卷积加速器,设计的整数推理加速器显著降低了数字信号处理器(Digital Signal Processor, DSP)资源占用,将DSP效率提高为0.200每秒十亿次运算(Giga Operations Per Second, GOPS)/DSP,为低位宽整数推理转置卷积加速器设计提供参考。 展开更多
关键词 卷积神经网络 转置卷积 转换转置卷积卷积算法 INT8量化 硬件加速器
在线阅读 下载PDF
融合转置卷积与深度残差图像语义分割方法 被引量:8
2
作者 刘腊梅 王晓娜 +1 位作者 刘万军 曲海成 《计算机科学与探索》 CSCD 北大核心 2022年第9期2132-2142,共11页
针对深度学习图像语义分割方法中存在分割精度低、损失率高的问题,提出了融合转置卷积与深度残差图像语义分割方法。首先,为了解决神经网络深度增加引起分割精度下降、收敛速度慢的问题,设计一种深度残差学习模块来提升网络的训练效率... 针对深度学习图像语义分割方法中存在分割精度低、损失率高的问题,提出了融合转置卷积与深度残差图像语义分割方法。首先,为了解决神经网络深度增加引起分割精度下降、收敛速度慢的问题,设计一种深度残差学习模块来提升网络的训练效率和收敛速度;然后,为了使上采样过程与特征提取过程中特征图融合精度更高,将深度残差U-net模型中UpSampling2D和转置卷积两种上采样方式进行拼接,形成新的上采样模块;最后,针对网络训练过程中训练集与验证集之间存在的权值过度拟合问题,在网络的跳跃连接层引入Dropout,增强了网络的学习能力。在CamVid数据集上对算法的性能进行了证明,算法语义分割精度达到89.93%,损失率降到0.23,与U-net模型相比,验证集精度提升了13.13个百分点,损失率降低了1.20,优于当前的图像语义分割方法。所提出的图像语义分割新模型,综合了U-net模型的优点,使得图像语义分割精度更高,语义分割的效果更好,有效提升了算法的鲁棒性。 展开更多
关键词 图像语义分割 U-net模型 深度残差网络 转置卷积
在线阅读 下载PDF
基于转置卷积神经网络的路面裂缝识别算法 被引量:13
3
作者 刘奇 于斌 +1 位作者 孟祥成 张晓宇 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第12期124-132,共9页
为解决卷积神经网络(CNN)在二维路面灰度图像裂缝自动检测中存在的识别效率和精确度低的问题,首先提出了一套基于转置CNN层间特征融合的三阶段路面裂缝提取算法(该算法包括区域判定、图像分割、多层特征融合等模块);然后构建了分类-分... 为解决卷积神经网络(CNN)在二维路面灰度图像裂缝自动检测中存在的识别效率和精确度低的问题,首先提出了一套基于转置CNN层间特征融合的三阶段路面裂缝提取算法(该算法包括区域判定、图像分割、多层特征融合等模块);然后构建了分类-分割网络,训练了多个融合分类网络中间层和分割网络输出层的转置卷积网络,并与CrackNet进行了运行效果的对比。结果表明:当用于区域判定的分割网络CNN-Ⅰ的召回率最小值设置为0.95时,精确度为0.497,此时的阈值为0.003152,结合用于裂缝提取的分割网络CNN-Ⅱ的训练结果得出,分类-分割网络的精确度为0.78、召回率为0.73、F-1分数为0.75、计算一张图片的时间缩短到0.79 ms以内;多层特征融合方法提取裂缝信息更准确,保留了裂缝的连续性特征,实现了基于CNN的路面裂缝自动识别和提取的优化。 展开更多
关键词 转置卷积神经网络 路面裂缝识别 多层特征融合 分类-分割网络
在线阅读 下载PDF
结合卷积与转置卷积特征的模糊车牌复原方法 被引量:1
4
作者 杨剑 张涛 +1 位作者 宋文爱 宋超峰 《科学技术与工程》 北大核心 2018年第17期241-249,共9页
深度学习算法在图像去噪领域已经得到了很好的效果;但目前对于深度学习算法在模糊图像复原领域的研究没有更深入的研究。直接应用图像去噪的方法对模糊车牌进行复原实际上可行的,但会产生复原图像细节缺失,时间代价高的缺点。针对这些问... 深度学习算法在图像去噪领域已经得到了很好的效果;但目前对于深度学习算法在模糊图像复原领域的研究没有更深入的研究。直接应用图像去噪的方法对模糊车牌进行复原实际上可行的,但会产生复原图像细节缺失,时间代价高的缺点。针对这些问题,吸取去噪方法的优点,提出将原始图像信息与转置卷积复原后的图像信息相结合的方法,重新构建了图像复原网络结构;并根据图像特点自定了损失函数。实验通过与已有的方法进行对比说明,提出的复原方法在复原车牌图像质量上和复原效率上都有很好的表现;同时对模糊运动角度与不同噪声具有健壮性;而模糊运动像素越大的图片,复原图像的质量也会下降。 展开更多
关键词 深度学习 转置卷积 模糊车牌 图像复原
在线阅读 下载PDF
Winograd转置卷积快速实现方法研究 被引量:1
5
作者 李钊 黄程程 +1 位作者 何益智 苏晓杰 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第6期148-160,共13页
Winograd转置卷积算法是现场可编程门阵列中广泛使用的卷积加速方法,可通过分组后执行Winograd卷积来解决转置卷积的零填充问题。然而该方法需要对输入特征映射和卷积核进行分组运算,且需要对运算结果进行重组,以生成完整的输出特征映射... Winograd转置卷积算法是现场可编程门阵列中广泛使用的卷积加速方法,可通过分组后执行Winograd卷积来解决转置卷积的零填充问题。然而该方法需要对输入特征映射和卷积核进行分组运算,且需要对运算结果进行重组,以生成完整的输出特征映射,复杂的元素坐标计算增加了设计的复杂度。针对上述问题,提出一种采用统一转换矩阵计算Winograd转置卷积的方法,使用统一的转换矩阵代替对输入特征映射和卷积核进行分组,有效解决了重叠求和、零填充、卷积核翻转、分解和重组等问题。并在该方法的指导下,结合数据重用、双缓冲区设计和流水线等方法,完成了现场可编程门阵列上转置卷积的加速器的设计。选择高斯-泊松生成对抗网络进行实验验证,并与主流的转置卷积设计方法进行了综合比较。实验结果表明,提出的方法可有效降低资源消耗和功耗,加速器的有效性能比现有的转置卷积方法提高了约1.13至23.92倍。 展开更多
关键词 统一转换矩阵 Winograd转置卷积 现场可编程门阵列 加速器
在线阅读 下载PDF
基于转置卷积操作改进的单阶段多边框目标检测方法 被引量:8
6
作者 郭川磊 何嘉 《计算机应用》 CSCD 北大核心 2018年第10期2833-2838,共6页
针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操... 针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操作扩大网络结构中深层特征图的尺寸,为浅层特征图引入对目标的高层抽象和上下文信息;其次,使用全连接卷积层减少浅层特征图在进行特征聚合时出现偏差的可能性;最后,将浅层特征图与表示了上下文信息的深层特征图拼接,并使用1×1卷积操作恢复通道数。特征聚合过程可以循环进行多次。实验结果表明,使用KITTI数据集,以交并比(Io U)为0. 7评估平均检测精度,与原始SSD模型相比,循环特征聚合模型的检测精度提高了5. 1个百分点;与已有的精度最高Faster R-CNN相比,检测精度提高了2个百分点。循环特征聚合模型能有效提升平均目标检测精度,生成高质量的边界框。 展开更多
关键词 目标检测 转置卷积 特征聚合 单阶段多边框目标检测模型
在线阅读 下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
7
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积 混合空洞卷积 通道注意力机制 转置卷积
在线阅读 下载PDF
基于卷积神经网络的超分辨率失真控制图像重构研究 被引量:1
8
作者 舒忠 郑波儿 《包装工程》 CAS 北大核心 2024年第7期222-233,共12页
目的解决超分辨率图像重构模型中存在的功能单元之间关联性差,图像色度特征提取完整性不强、超分辨率重构失真控制和采样过程残差控制偏弱等问题。方法通过在卷积神经网络模型引入双激活函数,提高模型中各功能单元之间的兼容连接性;引... 目的解决超分辨率图像重构模型中存在的功能单元之间关联性差,图像色度特征提取完整性不强、超分辨率重构失真控制和采样过程残差控制偏弱等问题。方法通过在卷积神经网络模型引入双激活函数,提高模型中各功能单元之间的兼容连接性;引用密集连接卷积神经网络构建超分辨率失真控制单元,分别实现对4个色度分量进行卷积补偿运算;将残差插值函数应用于上采样单元中,使用深度反投影网络规则实现超分辨率色度特征插值运算。结果设计的模型集联了内部多个卷积核,实现了超分辨率色度失真补偿,使用了统一的处理权值,确保了整个模型内部组成单元的有机融合。结论相关实验结果验证了本文图像重构模型具有良好可靠性、稳定性和高效性。 展开更多
关键词 卷积神经网络 超分辨率 激活函数 转置卷积 深度反投影网络模型 图像重构
在线阅读 下载PDF
融合深度学习算法的炉内燃烧温度场分布在线重建
9
作者 任世鹏 安元 +3 位作者 娄春 梅晟东 刘凯 陈新建 《化工进展》 北大核心 2025年第4期1923-1933,共11页
在锅炉恶劣测量环境下,为了保证热辐射成像技术对炉内燃烧温度场分布在线检测的持续有效性及可靠性,融合使用深度学习算法以获取炉内温度场分布。在对某电厂350MW四角切圆燃煤锅炉进行数据提取及计算后,获取包含机组运行参数和炉内燃烧... 在锅炉恶劣测量环境下,为了保证热辐射成像技术对炉内燃烧温度场分布在线检测的持续有效性及可靠性,融合使用深度学习算法以获取炉内温度场分布。在对某电厂350MW四角切圆燃煤锅炉进行数据提取及计算后,获取包含机组运行参数和炉内燃烧温度场分布的数据集并进行划分及预处理,进而分别建立并训练基于多层感知器(MLP)、长短时记忆(LSTM)和转置卷积神经网络(TCNN)的燃烧温度场预测模型。使用3种模型对不同负荷工况进行了炉内温度场预测及误差分析,并使用测试集对3种模型进行了评价指标计算及对比。结果表明:在变负荷运行范围内,TCNN模型对炉内温度场的泛化能力在3种模型中最佳,能够更准确预测炉内燃烧温度场分布;在3种模型中,TCNN模型对测试集的平均绝对误差和均方根误差降低至45.51K和59.73K,并且平均预测相对误差小于3.6%,满足工程应用需求,论证了该模型可用于弥补图像探头清洁期间不能获得炉内温度场的不足,进而确保其在炉内恶劣测量环境下在线检测炉内温度场的连续性及可靠性。 展开更多
关键词 燃煤锅炉 燃烧温度场 深度学习算法 转置卷积神经网络 热辐射成像
在线阅读 下载PDF
基于多任务学习的全景驾驶感知算法
10
作者 吴伟林 刘春泉 余孝源 《计算机工程与设计》 北大核心 2025年第4期1127-1133,共7页
针对全景驾驶感知算法YOLOP存在特征图池化操作自适应较差、下采样过程细节丢失和模型性能差的问题,提出一种基于多任务学习的全景驾驶感知算法,引入高效处理模块,提高对特征图池化操作自适应能力,采用不同加权系数的损失函数,提升网络... 针对全景驾驶感知算法YOLOP存在特征图池化操作自适应较差、下采样过程细节丢失和模型性能差的问题,提出一种基于多任务学习的全景驾驶感知算法,引入高效处理模块,提高对特征图池化操作自适应能力,采用不同加权系数的损失函数,提升网络的检测性能及鲁棒性。在BDD100K数据集的评估结果中,车道线检测准确率提高11.6%,可行驶区域检测的平均交并比(mIoU)提高2.1%,车辆检测的平均精确率均值的50%指标(mAP50)提高3.7%。在KITTI数据集的评估结果中,车辆检测mAP50指标提高3.4%。 展开更多
关键词 多任务学习网络 编码-解码器 车道线检测 可行驶区域检测 车辆检测 特征对齐 转置卷积
在线阅读 下载PDF
基于改进YOLOv5s的马脸识别方法研究
11
作者 张立娟 唐开婷 《智慧农业导刊》 2025年第11期18-21,25,共5页
为实现马匹身份快速识别,该文以自建数据集为研究对象,提出一种基于YOLOv5s的轻量化检测算法。首先该算法将YOLOv5s的主干网络替换成轻量级神经网络MobileNetv3。其次在头部网络C3模块分别添加NAM、ParNet、Triplet注意力模块。最后将... 为实现马匹身份快速识别,该文以自建数据集为研究对象,提出一种基于YOLOv5s的轻量化检测算法。首先该算法将YOLOv5s的主干网络替换成轻量级神经网络MobileNetv3。其次在头部网络C3模块分别添加NAM、ParNet、Triplet注意力模块。最后将最邻近插值上采样方式替换成转置卷积上采样方式。最优模型(YOLOv5s+v3+Triplet+ConvTranspose2d)平均精度均值为99.5%,准确率为97.2%,召回率为98.9%,模型体积10.9 MB,相较于基础的YOLOv5s模型准确率提高0.5%,召回率提高0.2%,模型体积减小3.9 MB。改进模型在大幅减少模型大小的同时使模型性能保持在一个较高的水平,为畜牧养殖数字化和智能化提供方法参考,具有较高的应用价值。 展开更多
关键词 马脸识别 YOLOv5s MobileNetv3 注意力模块 转置卷积上采样
在线阅读 下载PDF
基于全卷积网络的FDD大规模MIMO系统CSI反馈 被引量:1
12
作者 杨媛媛 丁建军 《传感器与微系统》 CSCD 北大核心 2022年第3期87-90,共4页
在频分双工(FDD)大规模多输入多输出(MIMO)系统中,为了确保通信质量,用户设备(UE)需要将信道状态信息(CSI)反馈给基站(BS)。随着天线数量的增加,CSI反馈开销急剧增加,使得BS获得准确CSI变得困难。为了降低反馈开销,提高反馈质量,采用深... 在频分双工(FDD)大规模多输入多输出(MIMO)系统中,为了确保通信质量,用户设备(UE)需要将信道状态信息(CSI)反馈给基站(BS)。随着天线数量的增加,CSI反馈开销急剧增加,使得BS获得准确CSI变得困难。为了降低反馈开销,提高反馈质量,采用深度学习(DL)方法,提出一种基于全卷积网络的信道反馈网络MCMTNet,该网络由三部分构成。卷积神经网络(CNN)将CSI压缩。转置CNN和精细密集连接网络分别进行初始恢复和最终恢复。仿真结果表明:提出的MCMTNet的性能优于传统压缩感知方法和现有基于深度学习的网络CsiNet,MCMTNet可以处理任意维数的信道数据,且训练参数更少,复杂度更低。 展开更多
关键词 大规模MIMO CSI反馈 深度学习 卷积网络 卷积神经网络 转置卷积神经网络
在线阅读 下载PDF
基于Segformer与特征融合的水下养殖鱼类图像分割方法 被引量:2
13
作者 苏碧仪 梅海彬 袁红春 《渔业现代化》 CSCD 北大核心 2024年第6期80-90,共11页
水产养殖管理中,精准分割图像中的鱼类对生长管理至关重要,但水下环境复杂,图像质量低,现有分割方法面临精度低、泛化能力弱等挑战。提出了一种改进Segformer模型(FT-Segformer,简称SegFT)的水下鱼类图像分割方法。首先,利用四层transfo... 水产养殖管理中,精准分割图像中的鱼类对生长管理至关重要,但水下环境复杂,图像质量低,现有分割方法面临精度低、泛化能力弱等挑战。提出了一种改进Segformer模型(FT-Segformer,简称SegFT)的水下鱼类图像分割方法。首先,利用四层transformer block提取输入图像高分辨率到低分辨率的不同尺度特征。在解码器部分,借助特征金字塔融合机制增强上下文感知;然后,利用转置卷积还原特征图维度,进一步提升特征学习的效果;最后,构建了一个用于模型评估的真实水下养殖环境的锦鲤数据集(UAGF),并在该数据集上进行相关验证试验。结果显示:该模型在mIoU、mPA和mRecall等评估指标上均优于现有方法,分别提升了1.76%、0.39%和0.19%,在mIoU指标上,SegFT分别超越了U-Net、PSPNet、HRNet、Deeplabv3+模型1.92、3.73、3.07和3.58个百分点。研究表明,所提出的方法在复杂的水下环境下,具有显著的有效性和鲁棒性。分割性能上优于现有的监督图像分割方法。 展开更多
关键词 智慧水产养殖 图像分割 特征融合 转置卷积 深度学习
在线阅读 下载PDF
OMC框架下的行人多目标跟踪算法研究 被引量:1
14
作者 贺愉婷 车进 +1 位作者 吴金蔓 马鹏森 《计算机工程与应用》 CSCD 北大核心 2024年第5期172-182,共11页
多目标跟踪是计算机视觉领域被广泛研究的重要方向,但是在实际应用中,目标的快速移动、光照变化、遮挡等问题会导致跟踪性能变差,因此以多目标跟踪模型OMC为基础框架展开研究,以实现跟踪性能的进一步提升。针对多目标跟踪过程中存在的... 多目标跟踪是计算机视觉领域被广泛研究的重要方向,但是在实际应用中,目标的快速移动、光照变化、遮挡等问题会导致跟踪性能变差,因此以多目标跟踪模型OMC为基础框架展开研究,以实现跟踪性能的进一步提升。针对多目标跟踪过程中存在的目标特征质量层次不齐的问题,对特征提取器进行优化,在主干网络集成了GAM注意力机制并在Neck网络部分更换了上采样方式;针对现有方法中存在的检测任务和重识别任务之间的“竞争问题”,构建了递归交叉相关网络,使得模型可以学习不同任务的特性和共性。此处针对两个子任务分别进行了优化,一是设计了新的通道注意力HS-CAM优化了重识别网络;二是更换了检测部分的边界回归损失函数,采用EIoU损失函数。实验表明,在MOT16数据集上MOTA指标可达73.5%,IDF1可达70.4%,MLgt为11.7%,相比较OMC算法减少了1.5个百分点。 展开更多
关键词 计算机视觉 多目标跟踪 GAM注意力机制 转置卷积 EIoU损失函数
在线阅读 下载PDF
基于CNN的双边融合网络在高光谱图像分类中的应用 被引量:3
15
作者 高红民 曹雪莹 +2 位作者 杨耀 花再军 李臣明 《通信学报》 EI CSCD 北大核心 2020年第11期132-140,共9页
针对基于深度卷积神经网络的高光谱图像分类算法中存在的空间分辨率下降、池化操作引发特征丢失从而导致分类精度下降的问题,设计了一种由双边融合块构成的双边融合块网络。1×1卷积与超链接构成双边融合块上结构,传递局部空间特征... 针对基于深度卷积神经网络的高光谱图像分类算法中存在的空间分辨率下降、池化操作引发特征丢失从而导致分类精度下降的问题,设计了一种由双边融合块构成的双边融合块网络。1×1卷积与超链接构成双边融合块上结构,传递局部空间特征,池化、卷积、反卷积、上采样组成下结构,强化高效判别特征。在3个基准高光谱图像数据集上的实验结果表明,该模型优于其他同类分类模型。 展开更多
关键词 卷积神经网络 高光谱图像分类 转置卷积 上采样 超链接
在线阅读 下载PDF
基于人工神经网络的烟气及温度实时预测模型 被引量:5
16
作者 李伟 胡淋翔 +1 位作者 杨满江 刘晓平 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第3期5-12,共8页
为监测建筑火灾事故区域的危险程度,实现更加安全、高效的火灾应急救援,以通廊式建筑为研究对象,基于转置卷积神经网络及数值模拟方法开发1种可实时预测走廊位置处烟气扩散和温度分布的神经网络模型。首先,依托Python建立包含全连接、... 为监测建筑火灾事故区域的危险程度,实现更加安全、高效的火灾应急救援,以通廊式建筑为研究对象,基于转置卷积神经网络及数值模拟方法开发1种可实时预测走廊位置处烟气扩散和温度分布的神经网络模型。首先,依托Python建立包含全连接、转置卷积、反池化等在内的19层神经网络模型的整体架构;其次,建立包含99个火灾场景,共7920组图像数据的火场信息数据库用于模型训练;最后,使用测试集对模型进行可靠性验证。研究结果表明:烟气(温度)预测模型在不同火灾场景下的预测精度达到95%,训练完成后模型的预测时间一般为1~2 s。研究结果可为应急策略的快速制定提供数据参考。 展开更多
关键词 消防安全 转置卷积神经网络(TCNN) 数值模拟 烟气扩散 温度分布 实时预测
在线阅读 下载PDF
基于改进SSD的轻量化小目标检测算法 被引量:60
17
作者 吴天舒 张志佳 +2 位作者 刘云鹏 裴文慧 陈红叶 《红外与激光工程》 EI CSCD 北大核心 2018年第7期37-43,共7页
为提高SSD目标检测算法的小目标检测能力,提出在SSD算法中引入转置卷积结构,采用转置卷积将低分辨率高语义信息特征图与高分辨率低语义信息特征图相融合,增加低层特征提取能力,提高SSD算法的平均精准度。同时针对SSD算法存在模型过大,... 为提高SSD目标检测算法的小目标检测能力,提出在SSD算法中引入转置卷积结构,采用转置卷积将低分辨率高语义信息特征图与高分辨率低语义信息特征图相融合,增加低层特征提取能力,提高SSD算法的平均精准度。同时针对SSD算法存在模型过大,运行内存占用量过高,无法在嵌入式ARM设备上运行的问题,以DenseNet为基础,结合深度可分离卷积,逐点分组卷积与通道重排提出轻量化特征提取最小单元,将SSD算法特征提取部分替换为轻量化特征提取最小单元的组合后,可在嵌入式ARM设备上运行。在PASCAL VOC数据集和KITTI自动驾驶数据集上进行对比实验,结果表明改进后的网络结构在平均精准度上得到明显提升,模型参数数量得到有效降低。 展开更多
关键词 目标检测 转置卷积 深度可分离卷积 嵌入式 PASCAL VOC数据集 KITTI数据集
在线阅读 下载PDF
基于神经网络的剩余油分布预测及注采参数优化 被引量:22
18
作者 吴君达 李治平 +1 位作者 孙妍 曹旭升 《油气地质与采收率》 CAS CSCD 北大核心 2020年第4期85-93,共9页
针对注水开发过程中注采参数的优化问题,提出采用神经网络代替数值模拟对剩余油分布进行预测,并结合无梯度差分进化算法对注采参数进行优化.该模型不仅建立了注采参数与目标函数的非线性关系,还能准确预测不同生产阶段剩余油分布.其预... 针对注水开发过程中注采参数的优化问题,提出采用神经网络代替数值模拟对剩余油分布进行预测,并结合无梯度差分进化算法对注采参数进行优化.该模型不仅建立了注采参数与目标函数的非线性关系,还能准确预测不同生产阶段剩余油分布.其预测原理是将注采参数和生产时间视为剩余油分布图像的高级特征,利用卷积层提取特征、转置卷积层进行上采样,通过多个卷积与转置卷积的组合逐级恢复原图像,从而达到准确预测的效果.在神经网络构建过程中,选择多个3×3的小卷积核来代替大卷积核,在不影响感受野的情况下减少了参数量,节约了计算成本,有效提高了模型训练时的迭代效率.以某区块4口注入井、5口生产井的五点井网为例,将不同阶段生产井的井底压力、注入井的注入量以及生产时间作为输入参数,建立了基于神经网络的预测模型,以净现值作为目标函数,通过差分优化算法对4个阶段的注采参数进行了优化.相比于基础方案,优化后的方案净现值提高了约21%. 展开更多
关键词 神经网络 转置卷积 差分进化算法 注采优化 剩余油分布
在线阅读 下载PDF
改进YOLOv5s的无人机鼠洞目标检测 被引量:3
19
作者 张岩 罗小玲 潘新 《山西农业大学学报(自然科学版)》 CAS 北大核心 2023年第4期96-106,共11页
[目的]针对自然场景下无人机拍摄的图像中鼠洞目标占比小,与地物高度融合且容易受阴影等各类因素影响,导致误识别率高的情况,需要对目标检测算法进行改进,以提高鼠洞定位精度。[方法]以YOLOv5s为基础算法进行优化改进,在Backbone主干网... [目的]针对自然场景下无人机拍摄的图像中鼠洞目标占比小,与地物高度融合且容易受阴影等各类因素影响,导致误识别率高的情况,需要对目标检测算法进行改进,以提高鼠洞定位精度。[方法]以YOLOv5s为基础算法进行优化改进,在Backbone主干网络的C3模块融合轻量ECA注意力机制模块,从通道方面更好关注特征信息,降低漏检率;在特征金字塔FPN中引入转置卷积学习最佳上采样方法,恢复卷积运算中丢失的有用信息;用SIoU替换CIoU损失函数来有效减少冗余框,同时加快预测框的收敛和回归。其次,做消融实验来验证3种改进策略的有效性并对比模型改进前后在不同场景下的识别情况。[结果]改进的YOLOv5s比原始模型的P、R和mAP分别提高了3.3%、3.7%和3.5%,FPS达到了56.7,且在特殊场景下无漏检、错检的情况,可以保证鼠洞检测的准确性和实时性。对比其它算法在平均检测精度、体积和速度上都较有优势。[结论]本文改进的算法能满足在复杂场景下的鼠洞检测,实现精确定位,为鼠害监测提供鼠洞检测方面的支撑。 展开更多
关键词 草原鼠害 鼠洞检测 无人机 YOLOv5s ECA 转置卷积 SIoU
在线阅读 下载PDF
基于MS-YOLOv3的车辆目标实时检测算法 被引量:3
20
作者 王玲 张松 +1 位作者 王鹏 陶跃 《计算机应用与软件》 北大核心 2021年第10期189-195,共7页
检测车辆目标是交通监控系统中一项具有挑战性的任务,针对实时检测算法YOLOv3车辆目标检测精度低的问题,提出一种融合多尺度特征的目标检测算法MS-YOLOv3。在特征提取阶段,将位置信息明确的浅层特征与语义丰富的深层特征进行多尺度融合... 检测车辆目标是交通监控系统中一项具有挑战性的任务,针对实时检测算法YOLOv3车辆目标检测精度低的问题,提出一种融合多尺度特征的目标检测算法MS-YOLOv3。在特征提取阶段,将位置信息明确的浅层特征与语义丰富的深层特征进行多尺度融合,增加深层特征的位置信息,提高模型检测精度;在预测阶段,使用转置卷积操作替换最近邻插值法作为新的上采样方法,增强网络学习性,进一步提升模型检测精度。在不同数据集上的实验表明,MS-YOLOv3算法在精度和速度上均能获得较高的检测性能。 展开更多
关键词 YOLOv3 实时检测 特征融合 转置卷积 上采样
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部