期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
TDC转置卷积硬件加速器的设计与优化
1
作者 王国庆 严利民 《西安电子科技大学学报》 北大核心 2025年第2期156-166,共11页
转置卷积在深度学习(Deep Learning, DL)任务中应用广泛,但是在小型快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network-small, FSRCNN-s)中已经成为推理阶段的主要性能瓶颈,因此设计高效的转置卷积硬件加... 转置卷积在深度学习(Deep Learning, DL)任务中应用广泛,但是在小型快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network-small, FSRCNN-s)中已经成为推理阶段的主要性能瓶颈,因此设计高效的转置卷积硬件加速器至关重要。基于转换转置卷积为卷积(Transforming Deconvolution to Convolution, TDC)算法,将步长为2的转置卷积软件推理流程转换为4路并行的直接卷积硬件实现,验证了不完美映射情况下算法和硬件加速器的正确性。完成转置卷积加速器设计后,选择FSRCNN-s×2网络进行端到端部署,采用软硬件协同设计和8位整数(Integer 8-bit, INT8)量化调度策略平衡转置卷积推理精度和速度之间的矛盾。实验结果表明,设计的转置卷积硬件加速器精度损失在0.5dB以内,相比CPU基线推理速度缩短到17ms。对比其他转置卷积加速器,设计的整数推理加速器显著降低了数字信号处理器(Digital Signal Processor, DSP)资源占用,将DSP效率提高为0.200每秒十亿次运算(Giga Operations Per Second, GOPS)/DSP,为低位宽整数推理转置卷积加速器设计提供参考。 展开更多
关键词 卷积神经网络 转置卷积 转换转置卷积为卷积算法 INT8量化 硬件加速器
在线阅读 下载PDF
Winograd转置卷积快速实现方法研究 被引量:1
2
作者 李钊 黄程程 +1 位作者 何益智 苏晓杰 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第6期148-160,共13页
Winograd转置卷积算法是现场可编程门阵列中广泛使用的卷积加速方法,可通过分组后执行Winograd卷积来解决转置卷积的零填充问题。然而该方法需要对输入特征映射和卷积核进行分组运算,且需要对运算结果进行重组,以生成完整的输出特征映射... Winograd转置卷积算法是现场可编程门阵列中广泛使用的卷积加速方法,可通过分组后执行Winograd卷积来解决转置卷积的零填充问题。然而该方法需要对输入特征映射和卷积核进行分组运算,且需要对运算结果进行重组,以生成完整的输出特征映射,复杂的元素坐标计算增加了设计的复杂度。针对上述问题,提出一种采用统一转换矩阵计算Winograd转置卷积的方法,使用统一的转换矩阵代替对输入特征映射和卷积核进行分组,有效解决了重叠求和、零填充、卷积核翻转、分解和重组等问题。并在该方法的指导下,结合数据重用、双缓冲区设计和流水线等方法,完成了现场可编程门阵列上转置卷积的加速器的设计。选择高斯-泊松生成对抗网络进行实验验证,并与主流的转置卷积设计方法进行了综合比较。实验结果表明,提出的方法可有效降低资源消耗和功耗,加速器的有效性能比现有的转置卷积方法提高了约1.13至23.92倍。 展开更多
关键词 统一转换矩阵 Winograd转置卷积 现场可编程门阵列 加速器
在线阅读 下载PDF
融合深度学习算法的炉内燃烧温度场分布在线重建
3
作者 任世鹏 安元 +3 位作者 娄春 梅晟东 刘凯 陈新建 《化工进展》 北大核心 2025年第4期1923-1933,共11页
在锅炉恶劣测量环境下,为了保证热辐射成像技术对炉内燃烧温度场分布在线检测的持续有效性及可靠性,融合使用深度学习算法以获取炉内温度场分布。在对某电厂350MW四角切圆燃煤锅炉进行数据提取及计算后,获取包含机组运行参数和炉内燃烧... 在锅炉恶劣测量环境下,为了保证热辐射成像技术对炉内燃烧温度场分布在线检测的持续有效性及可靠性,融合使用深度学习算法以获取炉内温度场分布。在对某电厂350MW四角切圆燃煤锅炉进行数据提取及计算后,获取包含机组运行参数和炉内燃烧温度场分布的数据集并进行划分及预处理,进而分别建立并训练基于多层感知器(MLP)、长短时记忆(LSTM)和转置卷积神经网络(TCNN)的燃烧温度场预测模型。使用3种模型对不同负荷工况进行了炉内温度场预测及误差分析,并使用测试集对3种模型进行了评价指标计算及对比。结果表明:在变负荷运行范围内,TCNN模型对炉内温度场的泛化能力在3种模型中最佳,能够更准确预测炉内燃烧温度场分布;在3种模型中,TCNN模型对测试集的平均绝对误差和均方根误差降低至45.51K和59.73K,并且平均预测相对误差小于3.6%,满足工程应用需求,论证了该模型可用于弥补图像探头清洁期间不能获得炉内温度场的不足,进而确保其在炉内恶劣测量环境下在线检测炉内温度场的连续性及可靠性。 展开更多
关键词 燃煤锅炉 燃烧温度场 深度学习算法 转置卷积神经网络 热辐射成像
在线阅读 下载PDF
基于SSA-VMD和SDP的双通道CNN轴承故障识别方法
4
作者 蒋丽英 高铭悦 李贺 《机电工程》 北大核心 2025年第2期257-266,共10页
针对滚动轴承故障振动信号具有非线性和非平稳性等特征,以及单通道卷积神经网络(CNN)提取故障特征不显著的问题,提出了一种基于麻雀算法-变分模态分解(SSA-VMD)和对称点模式(SDP)的双通道CNN滚动轴承故障诊断方法。首先,结合样本熵和皮... 针对滚动轴承故障振动信号具有非线性和非平稳性等特征,以及单通道卷积神经网络(CNN)提取故障特征不显著的问题,提出了一种基于麻雀算法-变分模态分解(SSA-VMD)和对称点模式(SDP)的双通道CNN滚动轴承故障诊断方法。首先,结合样本熵和皮尔逊相关系数,构建了新的综合适应度函数,利用麻雀算法(SSA)进行了自适应寻优,确定了最佳的变分模态分解(VMD)参数K和α。将原始振动信号经过VMD分解后,得到了本征模态函数(IMF)分量,通过计算各IMF分量的峭度值进行了筛选,将筛选出的信号进行重构后得到了一维特征信号;然后,根据互相关系数选择了合适的对称点模式(SDP)参数值,将原始振动信号转化为极坐标下的SDP图像,获得了具有良好可分性的二维特征图;最后,将一维和二维特征作为双通道CNN的输入进行了联合训练,将训练好的网络用于故障类型识别,在西储大学和江南大学的轴承数据集上对其有效性进行了验证。研究结果表明:通过网络训练,其故障诊断的准确率分别达到了98.5%和100%。该结果验证了该方法在准确识别故障特征方面具有优越性和普适性。 展开更多
关键词 一维特征信号构建 二维特征转换 卷积神经网络 麻雀算法 变分模态分解 对称点模式
在线阅读 下载PDF
融合CNN和ViT的声信号轴承故障诊断方法 被引量:10
5
作者 宁方立 王珂 郝明阳 《振动与冲击》 EI CSCD 北大核心 2024年第3期158-163,170,共7页
针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像... 针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。 展开更多
关键词 短时傅里叶变换 卷积神经网络 视觉转换 t-分布领域嵌入算法
在线阅读 下载PDF
基于SVMD-ISSA-CNN-TGLSTM的供热负荷预测模型 被引量:3
6
作者 薛贵军 牛盼 +1 位作者 谢文举 李水清 《现代电子技术》 北大核心 2024年第11期131-139,共9页
针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM... 针对目前集中供热负荷预测的研究中极少考虑换热站内部因素以及供热负荷预测精准度较低的问题,提出一种基于SVMD-ISSA-CNN-TGLSTM的混合预测模型。首先,利用卷积神经网络和转换门控长短期记忆神经网络构建具有空间提取能力的CNN-TGLSTM模型;其次,考虑到负荷序列的非平稳特征,采用SVMD分解,并引用改进的麻雀搜索算法来优化模型的参数,避免调参陷入局部最优;最后,将不同模型之间的预测效果与经济效益进行对比。结果表明:SVMD-ISSA-CNN-TGLSTM模型经济效益最高,评价指标RMSE、MSE、MAE相比ISSA-CNN-TGLSTM模型分别降低了35.7%、59.0%、32.7%,且均优于其他不同模型,预测效果最佳。 展开更多
关键词 供热负荷预测 逐次变分模态分解 改进的麻雀搜索算法 卷积神经网络 转换门控长短期记忆神经网络 空间提取能力
在线阅读 下载PDF
基于神经网络的剩余油分布预测及注采参数优化 被引量:22
7
作者 吴君达 李治平 +1 位作者 孙妍 曹旭升 《油气地质与采收率》 CAS CSCD 北大核心 2020年第4期85-93,共9页
针对注水开发过程中注采参数的优化问题,提出采用神经网络代替数值模拟对剩余油分布进行预测,并结合无梯度差分进化算法对注采参数进行优化.该模型不仅建立了注采参数与目标函数的非线性关系,还能准确预测不同生产阶段剩余油分布.其预... 针对注水开发过程中注采参数的优化问题,提出采用神经网络代替数值模拟对剩余油分布进行预测,并结合无梯度差分进化算法对注采参数进行优化.该模型不仅建立了注采参数与目标函数的非线性关系,还能准确预测不同生产阶段剩余油分布.其预测原理是将注采参数和生产时间视为剩余油分布图像的高级特征,利用卷积层提取特征、转置卷积层进行上采样,通过多个卷积与转置卷积的组合逐级恢复原图像,从而达到准确预测的效果.在神经网络构建过程中,选择多个3×3的小卷积核来代替大卷积核,在不影响感受野的情况下减少了参数量,节约了计算成本,有效提高了模型训练时的迭代效率.以某区块4口注入井、5口生产井的五点井网为例,将不同阶段生产井的井底压力、注入井的注入量以及生产时间作为输入参数,建立了基于神经网络的预测模型,以净现值作为目标函数,通过差分优化算法对4个阶段的注采参数进行了优化.相比于基础方案,优化后的方案净现值提高了约21%. 展开更多
关键词 神经网络 转置卷积 差分进化算法 注采优化 剩余油分布
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部