期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的轨道扣件状态检测
被引量:
8
1
作者
刘欣
张瑶
熊新娟
《实验室研究与探索》
CAS
北大核心
2018年第11期58-61,共4页
为提高铁路轨道扣件状态检测的效率和准确率,提出基于卷积神经网络的轨道扣件状态检测算法。通过原始图像数据增强、采用修正线性单元、引入弃权技术等优化方法,减小过拟合,提高卷积神经网络的泛化能力。经试验对比,该算法不需要进行特...
为提高铁路轨道扣件状态检测的效率和准确率,提出基于卷积神经网络的轨道扣件状态检测算法。通过原始图像数据增强、采用修正线性单元、引入弃权技术等优化方法,减小过拟合,提高卷积神经网络的泛化能力。经试验对比,该算法不需要进行特征提取等预处理操作,有效地解决了训练精度和泛化能力差的问题,准确率达到98. 1%,优于传统基于特征提取的图像识别算法。
展开更多
关键词
轨道扣件状态检测
图像识别
卷积神经网络
深度学习
数据增强
在线阅读
下载PDF
职称材料
题名
基于卷积神经网络的轨道扣件状态检测
被引量:
8
1
作者
刘欣
张瑶
熊新娟
机构
南京工程学院工业中心
出处
《实验室研究与探索》
CAS
北大核心
2018年第11期58-61,共4页
基金
南京工程学院青年基金项目(QKJA201506
QKJA201507)
文摘
为提高铁路轨道扣件状态检测的效率和准确率,提出基于卷积神经网络的轨道扣件状态检测算法。通过原始图像数据增强、采用修正线性单元、引入弃权技术等优化方法,减小过拟合,提高卷积神经网络的泛化能力。经试验对比,该算法不需要进行特征提取等预处理操作,有效地解决了训练精度和泛化能力差的问题,准确率达到98. 1%,优于传统基于特征提取的图像识别算法。
关键词
轨道扣件状态检测
图像识别
卷积神经网络
深度学习
数据增强
Keywords
track fastener state detection
image recognition
convolutional neural network
deep learning
data augmentation
分类号
TP571 [自动化与计算机技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的轨道扣件状态检测
刘欣
张瑶
熊新娟
《实验室研究与探索》
CAS
北大核心
2018
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部