巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(...巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(grey wolf optimizer, GWO)算法的掘进机断面成形轨迹规划方法。首先,根据夹矸位置将待截割断面环境分为4种情况,对相应断面进行栅格化处理并建立栅格地图,同时采用二值膨胀法对不规则夹矸进行膨胀化处理。然后,对GWO算法进行了改进,以提升其寻优性能和收敛速度。接着,开展了仿真实验,利用改进GWO算法实现了4种环境下掘进机断面成形轨迹的规划。最后,利用掘进机样机开展了断面截割实验。仿真结果表明:相较于传统的GWO算法,改进GWO算法的收敛速度更快且收敛精度更高;在4种断面环境下,基于改进GWO算法规划的断面成形轨迹长度最短,欠挖面积最小,转向次数最少,更容易实现高精度、高效率的轨迹跟踪控制,保证了巷道断面的成形质量。实验结果表明,基于改进GWO算法规划的断面成形轨迹既能提高掘进机的截割效率,又能满足巷道断面成形的质量要求。研究结果可为煤矿井下智能掘进技术的发展提供新的思路和方法。展开更多
为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩...为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩短了路径长度提升路径质量,改进剪枝策略减少了树搜索的冗余节点。根据算法在简单、复杂和密集环境下的仿真结果显示,在密集环境下A-RRT^(*)算法的无效冗余节点剪除94.29%、内存缩减了94.29%、搜索时间提高了96.28%、迭代次数缩减了91.49%、路径距离缩短了10.18%。为了防止生成的路径不平整而使机械臂在运行中造成损伤,利用了三次B样条对路径进行了优化,通过三维机械臂仿真也可得出优化后的路径更加平滑,减少了机械臂在运行过程中的关节波动,更有利于机械臂的运行,进一步验证了算法在机械臂运行中的有效性。展开更多
文摘巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(grey wolf optimizer, GWO)算法的掘进机断面成形轨迹规划方法。首先,根据夹矸位置将待截割断面环境分为4种情况,对相应断面进行栅格化处理并建立栅格地图,同时采用二值膨胀法对不规则夹矸进行膨胀化处理。然后,对GWO算法进行了改进,以提升其寻优性能和收敛速度。接着,开展了仿真实验,利用改进GWO算法实现了4种环境下掘进机断面成形轨迹的规划。最后,利用掘进机样机开展了断面截割实验。仿真结果表明:相较于传统的GWO算法,改进GWO算法的收敛速度更快且收敛精度更高;在4种断面环境下,基于改进GWO算法规划的断面成形轨迹长度最短,欠挖面积最小,转向次数最少,更容易实现高精度、高效率的轨迹跟踪控制,保证了巷道断面的成形质量。实验结果表明,基于改进GWO算法规划的断面成形轨迹既能提高掘进机的截割效率,又能满足巷道断面成形的质量要求。研究结果可为煤矿井下智能掘进技术的发展提供新的思路和方法。
文摘为了解决RRT^(*)(rapidly-exploring random tree star)算法在搜索过程中速度低下和冗余节点过多,路径代价等问题,在RRT^(*)算法的基础上提出一种A-RRT^(*)算法,A-RRT^(*)算法通过融合A^(*)算法中的代价函数和使用了动态步长策略有效缩短了路径长度提升路径质量,改进剪枝策略减少了树搜索的冗余节点。根据算法在简单、复杂和密集环境下的仿真结果显示,在密集环境下A-RRT^(*)算法的无效冗余节点剪除94.29%、内存缩减了94.29%、搜索时间提高了96.28%、迭代次数缩减了91.49%、路径距离缩短了10.18%。为了防止生成的路径不平整而使机械臂在运行中造成损伤,利用了三次B样条对路径进行了优化,通过三维机械臂仿真也可得出优化后的路径更加平滑,减少了机械臂在运行过程中的关节波动,更有利于机械臂的运行,进一步验证了算法在机械臂运行中的有效性。