既有交叉口信号配时与网联自动驾驶车辆(Connected and Automated Vehicle,CAV)轨迹规划协同优化中,未考虑CAV环境下出口、左转、直行及右转车道数在运营期可灵活动态调整的优势。本文结合CAV技术特征,提出一套CAV环境下交叉口车道分配...既有交叉口信号配时与网联自动驾驶车辆(Connected and Automated Vehicle,CAV)轨迹规划协同优化中,未考虑CAV环境下出口、左转、直行及右转车道数在运营期可灵活动态调整的优势。本文结合CAV技术特征,提出一套CAV环境下交叉口车道分配可动态调整的控制规则,称为灵活车道策略,与已有固定车道策略相比,实现了运营期交叉口各方向出口车道数和进口车道数(包括左转、直行和右转)的灵活调整。将车道分配和信号配时与CAV轨迹规划纳入到一个统一优化框架中,构建混合整数线性规划优化模型,同时,可根据各个方向车道分配情况自动生成可行的相位相序方案,并通过案例分析验证模型的有效性。研究结果表明:优化模型可根据各流向交通需求生成最优车道分配方案,尤其是当固定车道策略的车道分配与各流向交通组成不匹配时,灵活车道策略有助于提升交叉口通行效率;在低流量场景,灵活车道策略降低了4.08%的车均延误;在高流量场景,交叉口采用固定车道策略将处于过饱和状态,而灵活车道策略依然能满足通行需求。展开更多
文摘既有交叉口信号配时与网联自动驾驶车辆(Connected and Automated Vehicle,CAV)轨迹规划协同优化中,未考虑CAV环境下出口、左转、直行及右转车道数在运营期可灵活动态调整的优势。本文结合CAV技术特征,提出一套CAV环境下交叉口车道分配可动态调整的控制规则,称为灵活车道策略,与已有固定车道策略相比,实现了运营期交叉口各方向出口车道数和进口车道数(包括左转、直行和右转)的灵活调整。将车道分配和信号配时与CAV轨迹规划纳入到一个统一优化框架中,构建混合整数线性规划优化模型,同时,可根据各个方向车道分配情况自动生成可行的相位相序方案,并通过案例分析验证模型的有效性。研究结果表明:优化模型可根据各流向交通需求生成最优车道分配方案,尤其是当固定车道策略的车道分配与各流向交通组成不匹配时,灵活车道策略有助于提升交叉口通行效率;在低流量场景,灵活车道策略降低了4.08%的车均延误;在高流量场景,交叉口采用固定车道策略将处于过饱和状态,而灵活车道策略依然能满足通行需求。