随着自动驾驶技术的快速发展,准确预测周围车辆的运动轨迹成为确保行车安全的关键。现有的方法大多未充分考虑车辆与环境以及车与车之间的互动和环境情景信息,面对复杂交通场景下的轨迹预测性能不佳。基于此,提出一种融合时空查询Transf...随着自动驾驶技术的快速发展,准确预测周围车辆的运动轨迹成为确保行车安全的关键。现有的方法大多未充分考虑车辆与环境以及车与车之间的互动和环境情景信息,面对复杂交通场景下的轨迹预测性能不佳。基于此,提出一种融合时空查询Transformer的情景感知多模态车辆轨迹预测模型(Contex-aware Multimodal Vehicle Trajectory Pediction Model Based on Spatio-Temporal Query Transformer,STQformer),高效地理解和预测复杂交通环境中的车辆行为。模型以Transformer框架为基础,引入可学习的时空查询并利用社交交互模块,实现对车辆意图的深度感知和更准确的轨迹预测。实验结果表明:与当前先进的轨迹预测算法相比,STQformer在长期预测方面的性能同比性能最佳对比模型提升了9%。该模型有助于提升自动驾驶系统的安全性和可靠性,推动自动驾驶技术的发展和应用,使其更好地适应复杂多变的交通环境,减少交通事故,提高交通效率。展开更多
针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨...针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment,DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。展开更多
不合理的车辆的换道行为是导致交通事故发生的主要原因之一,提前预知换道车辆的轨迹并及时做出相应调整有助于减少事故的发生。针对换道车辆轨迹预测问题,采用将深度学习和集成学习相结合的轨迹预测方法,并考虑了换道意图的影响。建立...不合理的车辆的换道行为是导致交通事故发生的主要原因之一,提前预知换道车辆的轨迹并及时做出相应调整有助于减少事故的发生。针对换道车辆轨迹预测问题,采用将深度学习和集成学习相结合的轨迹预测方法,并考虑了换道意图的影响。建立连续隐马尔可夫模型对车辆进行换道意图检测,提前判别车辆的换道状态,并输入至相应的轨迹预测模型中;将LSTM(long short term memory)作为AdaBoost算法(adaptive boosting)的基预测器,建立LSTM-AdaBoost模型,在多个基预测器同时进行轨迹预测的基础上,通过训练调整各个基预测器的权重并将结果加权集成,提升预测模型的精度和稳定性;通过NSGIM(next generation simulation)数据集对模型进行训练和测试,结果显示意图预测模型在变道前一秒的准确率在90%以上,LSTM-AdaBoost集成轨迹预测模型与单一的LSTM模型相比精度和稳定性显著提升,且预测结果中异常数据更少,具有较好的稳定性;同时预测对比结果也表明增加意图预测模块有助于提升换道轨迹预测的精度。展开更多
文摘随着自动驾驶技术的快速发展,准确预测周围车辆的运动轨迹成为确保行车安全的关键。现有的方法大多未充分考虑车辆与环境以及车与车之间的互动和环境情景信息,面对复杂交通场景下的轨迹预测性能不佳。基于此,提出一种融合时空查询Transformer的情景感知多模态车辆轨迹预测模型(Contex-aware Multimodal Vehicle Trajectory Pediction Model Based on Spatio-Temporal Query Transformer,STQformer),高效地理解和预测复杂交通环境中的车辆行为。模型以Transformer框架为基础,引入可学习的时空查询并利用社交交互模块,实现对车辆意图的深度感知和更准确的轨迹预测。实验结果表明:与当前先进的轨迹预测算法相比,STQformer在长期预测方面的性能同比性能最佳对比模型提升了9%。该模型有助于提升自动驾驶系统的安全性和可靠性,推动自动驾驶技术的发展和应用,使其更好地适应复杂多变的交通环境,减少交通事故,提高交通效率。
文摘针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment,DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。
文摘不合理的车辆的换道行为是导致交通事故发生的主要原因之一,提前预知换道车辆的轨迹并及时做出相应调整有助于减少事故的发生。针对换道车辆轨迹预测问题,采用将深度学习和集成学习相结合的轨迹预测方法,并考虑了换道意图的影响。建立连续隐马尔可夫模型对车辆进行换道意图检测,提前判别车辆的换道状态,并输入至相应的轨迹预测模型中;将LSTM(long short term memory)作为AdaBoost算法(adaptive boosting)的基预测器,建立LSTM-AdaBoost模型,在多个基预测器同时进行轨迹预测的基础上,通过训练调整各个基预测器的权重并将结果加权集成,提升预测模型的精度和稳定性;通过NSGIM(next generation simulation)数据集对模型进行训练和测试,结果显示意图预测模型在变道前一秒的准确率在90%以上,LSTM-AdaBoost集成轨迹预测模型与单一的LSTM模型相比精度和稳定性显著提升,且预测结果中异常数据更少,具有较好的稳定性;同时预测对比结果也表明增加意图预测模块有助于提升换道轨迹预测的精度。