车辆轨迹数据在智能交通系统中有着诸多应用,但其实际应用效果常常受数据缺失问题影响。雷达和视频融合感知技术的迅速发展虽然实现了车辆轨迹数据的全天候采集,但在交叉口场景中仍然面临雷达对排队静止目标不敏感,大型车辆遮挡等原因...车辆轨迹数据在智能交通系统中有着诸多应用,但其实际应用效果常常受数据缺失问题影响。雷达和视频融合感知技术的迅速发展虽然实现了车辆轨迹数据的全天候采集,但在交叉口场景中仍然面临雷达对排队静止目标不敏感,大型车辆遮挡等原因导致数据缺失问题。针对交叉口车辆轨迹数据缺失,本文提出一种基于物理信息深度学习的补全算法(Transformer-Full-Velocity-Difference, TF-FVD),将FVD跟驰模型的监督信号引入到Transformer模型的训练过程中,并增加信号灯状态编码模块以考虑交通信号约束。基于雷视轨迹数据集的实验结果表明:FVD模型监督信号和信号灯状态编码模块的引入分别带来了11.6%和15.6%的精度提升;在SinD(Signalized INtersection Dataset)公开数据集中,本文提出的TF-FVD模型较纯数据驱动SOTA(State of the Art)算法精度提升了25.3%;基于补全轨迹计算的车辆延误时间分布误差降低了9.14%,体现了其在实际应用中的价值。展开更多
随着自动驾驶技术的快速发展,准确预测周围车辆的运动轨迹成为确保行车安全的关键。现有的方法大多未充分考虑车辆与环境以及车与车之间的互动和环境情景信息,面对复杂交通场景下的轨迹预测性能不佳。基于此,提出一种融合时空查询Transf...随着自动驾驶技术的快速发展,准确预测周围车辆的运动轨迹成为确保行车安全的关键。现有的方法大多未充分考虑车辆与环境以及车与车之间的互动和环境情景信息,面对复杂交通场景下的轨迹预测性能不佳。基于此,提出一种融合时空查询Transformer的情景感知多模态车辆轨迹预测模型(Contex-aware Multimodal Vehicle Trajectory Pediction Model Based on Spatio-Temporal Query Transformer,STQformer),高效地理解和预测复杂交通环境中的车辆行为。模型以Transformer框架为基础,引入可学习的时空查询并利用社交交互模块,实现对车辆意图的深度感知和更准确的轨迹预测。实验结果表明:与当前先进的轨迹预测算法相比,STQformer在长期预测方面的性能同比性能最佳对比模型提升了9%。该模型有助于提升自动驾驶系统的安全性和可靠性,推动自动驾驶技术的发展和应用,使其更好地适应复杂多变的交通环境,减少交通事故,提高交通效率。展开更多
针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨...针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment,DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。展开更多
文摘车辆轨迹数据在智能交通系统中有着诸多应用,但其实际应用效果常常受数据缺失问题影响。雷达和视频融合感知技术的迅速发展虽然实现了车辆轨迹数据的全天候采集,但在交叉口场景中仍然面临雷达对排队静止目标不敏感,大型车辆遮挡等原因导致数据缺失问题。针对交叉口车辆轨迹数据缺失,本文提出一种基于物理信息深度学习的补全算法(Transformer-Full-Velocity-Difference, TF-FVD),将FVD跟驰模型的监督信号引入到Transformer模型的训练过程中,并增加信号灯状态编码模块以考虑交通信号约束。基于雷视轨迹数据集的实验结果表明:FVD模型监督信号和信号灯状态编码模块的引入分别带来了11.6%和15.6%的精度提升;在SinD(Signalized INtersection Dataset)公开数据集中,本文提出的TF-FVD模型较纯数据驱动SOTA(State of the Art)算法精度提升了25.3%;基于补全轨迹计算的车辆延误时间分布误差降低了9.14%,体现了其在实际应用中的价值。
文摘随着自动驾驶技术的快速发展,准确预测周围车辆的运动轨迹成为确保行车安全的关键。现有的方法大多未充分考虑车辆与环境以及车与车之间的互动和环境情景信息,面对复杂交通场景下的轨迹预测性能不佳。基于此,提出一种融合时空查询Transformer的情景感知多模态车辆轨迹预测模型(Contex-aware Multimodal Vehicle Trajectory Pediction Model Based on Spatio-Temporal Query Transformer,STQformer),高效地理解和预测复杂交通环境中的车辆行为。模型以Transformer框架为基础,引入可学习的时空查询并利用社交交互模块,实现对车辆意图的深度感知和更准确的轨迹预测。实验结果表明:与当前先进的轨迹预测算法相比,STQformer在长期预测方面的性能同比性能最佳对比模型提升了9%。该模型有助于提升自动驾驶系统的安全性和可靠性,推动自动驾驶技术的发展和应用,使其更好地适应复杂多变的交通环境,减少交通事故,提高交通效率。
文摘针对常规车辆轨迹预测数据集中较少包含极端交通场景信息的问题,本文提出一种新型对抗性攻击框架来模拟此类场景。首先,为了判定不同场景中对抗性攻击是否有效提出了一种阈值判定的方式;然后,针对攻击目的的不同分别设计了两种对抗性轨迹生成算法,在遵守物理约束和隐蔽性前提下,生成更具对抗性的轨迹样本;此外,提出3个新的评价指标全面评估攻击效果;最后,探究了不同的防御策略来减轻对抗攻击影响。实验结果显示,基于扰动阈值的快速攻击算法(attack algorithm based on perturbation threshold for fast attack,PTFA)和基于动态学习率调整的攻击算法(attack algorithm based on dynamic learning rate adjustment,DLRA)在NGSIM数据集上的攻击时间和扰动效果均优于现有算法,更高效发现模型弱点。本研究通过模拟极端情况丰富了轨迹样本,深入评估了模型鲁棒性,为后续优化奠定了基础。