期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
车联网络通过两级量化自适应卡尔曼滤波实现车辆状态预测
被引量:
5
1
作者
冯安琪
钱丽萍
+1 位作者
欧阳金源
吴远
《计算机科学》
CSCD
北大核心
2020年第5期230-235,共6页
随着城市化和机动化的快速发展,交通安全越来越受到人们的关注。利用车载网络系统获取车载数据来预测车辆下一时刻的车载状态,对于提高运输路段的交通安全起着重要作用。文中提出一种基于自回归滑动平均(Auto-Regressice Mo-ving Averag...
随着城市化和机动化的快速发展,交通安全越来越受到人们的关注。利用车载网络系统获取车载数据来预测车辆下一时刻的车载状态,对于提高运输路段的交通安全起着重要作用。文中提出一种基于自回归滑动平均(Auto-Regressice Mo-ving Average,ARMA)模型的两级量化自适应卡尔曼滤波算法,来预测车辆的行车状态(行驶的方向、行驶的车道、车辆的速度和加速度)。首先,开发了一个车载网络系统,通过交换车载单元(On-Board Unit,OBU)和路边单元(Roadside Unit,RSU)之间的交通数据来获取车辆数据;然后,通过配置在路边单元的边缘云服务器来预测车辆状态;最后,边缘服务器把预测到的状态信息广播给其他路边单元,以便交叉口其他车辆获取车辆信息。实验结果验证了用于预测加速度的自回归移动平均模型的有效性。此外,文中还评估了所提算法的有效性。与其他3种预测算法相比,所提算法的速度预测精度分别提高了90.62%,89.81%,82.76%,这说明该算法在车载网络中能有效预测车辆状态。
展开更多
关键词
车载网络
交通安全
量化自适应卡尔曼滤波
自回归滑动平均模型
车辆状态预测
在线阅读
下载PDF
职称材料
基于CNN-LSTM模型的车辆换道前跟驰研究
被引量:
3
2
作者
潘公宇
马斌
《重庆理工大学学报(自然科学)》
CAS
北大核心
2024年第2期1-8,共8页
考虑换道车辆在换道前的跟驰行为与无换道意图的一般跟驰行为有明显的差异,为研究车辆在换道前的特殊跟驰行为,提出“换道前跟驰”阶段概念,将换道车辆的跟驰过程划分为“基本跟驰”与“换道前跟驰”两阶段,以主车在换道前斜率的第五八...
考虑换道车辆在换道前的跟驰行为与无换道意图的一般跟驰行为有明显的差异,为研究车辆在换道前的特殊跟驰行为,提出“换道前跟驰”阶段概念,将换道车辆的跟驰过程划分为“基本跟驰”与“换道前跟驰”两阶段,以主车在换道前斜率的第五八分位数作为“换道前跟驰”的终点,使用z检验法验证了换道车辆在换道前跟驰阶段运动状态的特殊性。搭建CNN-LSTM网络以车辆速度、加速度、相对距离、横向偏移量等为输入,利用CNN层提取输入层特征,再将提取出的特征作为LSTM网络的输入,利用LSTM网络实现跟驰车辆状态的预测。仿真结果表明,传统的IDM不适用于车辆换道前的特殊跟驰行为,搭建的CNN-LSTM模型在加速度精度上较传统IDM模型提升了15.1%,更适用于车辆换道前跟驰状态的描述。
展开更多
关键词
换道前跟驰
车辆状态预测
CNN-LSTM融合神经网络
NGSIM数据集
在线阅读
下载PDF
职称材料
题名
车联网络通过两级量化自适应卡尔曼滤波实现车辆状态预测
被引量:
5
1
作者
冯安琪
钱丽萍
欧阳金源
吴远
机构
浙江工业大学信息工程学院
出处
《计算机科学》
CSCD
北大核心
2020年第5期230-235,共6页
基金
国家自然科学基金(61379122)
浙江省自然科学基金(LR16F010003)。
文摘
随着城市化和机动化的快速发展,交通安全越来越受到人们的关注。利用车载网络系统获取车载数据来预测车辆下一时刻的车载状态,对于提高运输路段的交通安全起着重要作用。文中提出一种基于自回归滑动平均(Auto-Regressice Mo-ving Average,ARMA)模型的两级量化自适应卡尔曼滤波算法,来预测车辆的行车状态(行驶的方向、行驶的车道、车辆的速度和加速度)。首先,开发了一个车载网络系统,通过交换车载单元(On-Board Unit,OBU)和路边单元(Roadside Unit,RSU)之间的交通数据来获取车辆数据;然后,通过配置在路边单元的边缘云服务器来预测车辆状态;最后,边缘服务器把预测到的状态信息广播给其他路边单元,以便交叉口其他车辆获取车辆信息。实验结果验证了用于预测加速度的自回归移动平均模型的有效性。此外,文中还评估了所提算法的有效性。与其他3种预测算法相比,所提算法的速度预测精度分别提高了90.62%,89.81%,82.76%,这说明该算法在车载网络中能有效预测车辆状态。
关键词
车载网络
交通安全
量化自适应卡尔曼滤波
自回归滑动平均模型
车辆状态预测
Keywords
Vehicular networks
Traffic safety
Quantized adaptive Kalman filter
Auto-regressive moving average model
Vehicle state predication
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于CNN-LSTM模型的车辆换道前跟驰研究
被引量:
3
2
作者
潘公宇
马斌
机构
江苏大学车辆产品实验室
江苏大学汽车与交通工程学院
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2024年第2期1-8,共8页
基金
国家自然科学基金面上项目(52072157)。
文摘
考虑换道车辆在换道前的跟驰行为与无换道意图的一般跟驰行为有明显的差异,为研究车辆在换道前的特殊跟驰行为,提出“换道前跟驰”阶段概念,将换道车辆的跟驰过程划分为“基本跟驰”与“换道前跟驰”两阶段,以主车在换道前斜率的第五八分位数作为“换道前跟驰”的终点,使用z检验法验证了换道车辆在换道前跟驰阶段运动状态的特殊性。搭建CNN-LSTM网络以车辆速度、加速度、相对距离、横向偏移量等为输入,利用CNN层提取输入层特征,再将提取出的特征作为LSTM网络的输入,利用LSTM网络实现跟驰车辆状态的预测。仿真结果表明,传统的IDM不适用于车辆换道前的特殊跟驰行为,搭建的CNN-LSTM模型在加速度精度上较传统IDM模型提升了15.1%,更适用于车辆换道前跟驰状态的描述。
关键词
换道前跟驰
车辆状态预测
CNN-LSTM融合神经网络
NGSIM数据集
Keywords
car following before lane change
vehicle status prediction
CNN-LSTM fusion neural network
NGSIM dataset
分类号
U491 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
车联网络通过两级量化自适应卡尔曼滤波实现车辆状态预测
冯安琪
钱丽萍
欧阳金源
吴远
《计算机科学》
CSCD
北大核心
2020
5
在线阅读
下载PDF
职称材料
2
基于CNN-LSTM模型的车辆换道前跟驰研究
潘公宇
马斌
《重庆理工大学学报(自然科学)》
CAS
北大核心
2024
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部