期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOX-s的车辆检测方法研究 被引量:6
1
作者 张稀柳 张晓玲 何敏军 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期487-496,共10页
为缓解车辆小目标漏检及误检问题,提出一种基于YOLOX网络的多尺度特征融合的改进车辆检测模型。设计基于深度可分离卷积的Ghost-CSP(cross stage partial),替换网络的部分跨阶段局部结构,加快检测速度;将模型的最大池化方式改进为Softp... 为缓解车辆小目标漏检及误检问题,提出一种基于YOLOX网络的多尺度特征融合的改进车辆检测模型。设计基于深度可分离卷积的Ghost-CSP(cross stage partial),替换网络的部分跨阶段局部结构,加快检测速度;将模型的最大池化方式改进为Softpool方式,并引入坐标注意力机制,增强待检测目标的特征表达,优化目标漏检问题;选用Focal Loss作为模型置信度损失函数以增加分类不准确样本的权重,提高模型对小目标的预测能力。实验结果表明:改进算法平均准确率提高到74.96%,速度达到73帧/s,在满足实时性要求下可以更好地完成车辆目标检测要求。 展开更多
关键词 YOLOX 多尺度特征融合 车辆检测模型 Softpool 坐标注意力 Focal Loss
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部