期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于融合卷积神经网络的车辆多目标检测方法
1
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部