目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading...目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading and resource allocation algorithm based on DRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parking edge server,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(double deep q network,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。展开更多
随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controlle...随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controller Area Network,CAN)总线协议,在发布时缺少隐私与安全保护机制。因此,为检测网络入侵、保护智能网联汽车安全,文中提出了一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN网络入侵检测方法。该方法提取单位时间窗内CAN网络报文ID的加权自信息量和ID的归一化值作为特征信息,并在移动边缘计算服务器处构建并训练SVDD模型,目标车辆基于训练的SVDD模型进行异常特征值识别,从而实现实时的车载CAN网络入侵检测。文中采用韩国高丽大学HCR实验室公开的CAN网络数据集,对所提方法与3种传统的基于信息熵的车载网络入侵检测方法在拒绝服务攻击和伪装攻击检测准确率方面进行了对比与分析。仿真实验结果表明,在少量报文入侵时,所提方法显著提高了入侵检测的准确率。展开更多
针对车载边缘计算环境中,边缘节点在为不同数据传输任务分配信道时产生的同信道干扰(Co-Channel Interferences,CCI)问题,本文形式化定义了车载边缘计算信道分配问题,致力于为不同数据传输任务合理分配信道,最大化数据传输任务的完成率...针对车载边缘计算环境中,边缘节点在为不同数据传输任务分配信道时产生的同信道干扰(Co-Channel Interferences,CCI)问题,本文形式化定义了车载边缘计算信道分配问题,致力于为不同数据传输任务合理分配信道,最大化数据传输任务的完成率.利用势博弈模型将全局优化的信道分配问题转化为边缘节点间的分布式信道分配博弈,并证明了信道分配博弈中纳什均衡的存在性.提出了基于激励的概率更新策略选择(Incentive-based Probability Update and Strategy Selection)算法,根据迭代中所选策略的激励值更新策略选择概率,并分析算法结果收敛至纳什均衡.最后,通过仿真实验验证了本文算法的收敛性以及收敛结果纳什均衡的有效性,且在任务完成率及信道利用效率上优于现有代表性算法.展开更多
为解决车载自组织网络(Vehicle Ad Hoc Neteorks,VANETs)中基础设施建设的不足以及路侧单元(Roadside Uints,RSUs)通信范围受限的问题,提出停车边缘计算的思想,把拥有大量闲置计算资源的路边停放车辆组织成停车簇,令停车簇充当天然边缘...为解决车载自组织网络(Vehicle Ad Hoc Neteorks,VANETs)中基础设施建设的不足以及路侧单元(Roadside Uints,RSUs)通信范围受限的问题,提出停车边缘计算的思想,把拥有大量闲置计算资源的路边停放车辆组织成停车簇,令停车簇充当天然边缘计算节点,在RSUs或边缘计算服务器缺失情况下,及时执行周围移动车辆的卸载任务.分析了任务的完成时间,为最大化成功完成的任务数量,设计改进的SAC(Sampling-and-Classification,SAC)算法实现执行任务的停放车辆选择和资源的分配.基于真实城市道路停车调查的模拟实验结果证明,与其他几种任务调度策略相比,本文所提策略具有较高的任务完成率和卸载率.展开更多
文摘目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading and resource allocation algorithm based on DRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parking edge server,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(double deep q network,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。
文摘随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controller Area Network,CAN)总线协议,在发布时缺少隐私与安全保护机制。因此,为检测网络入侵、保护智能网联汽车安全,文中提出了一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN网络入侵检测方法。该方法提取单位时间窗内CAN网络报文ID的加权自信息量和ID的归一化值作为特征信息,并在移动边缘计算服务器处构建并训练SVDD模型,目标车辆基于训练的SVDD模型进行异常特征值识别,从而实现实时的车载CAN网络入侵检测。文中采用韩国高丽大学HCR实验室公开的CAN网络数据集,对所提方法与3种传统的基于信息熵的车载网络入侵检测方法在拒绝服务攻击和伪装攻击检测准确率方面进行了对比与分析。仿真实验结果表明,在少量报文入侵时,所提方法显著提高了入侵检测的准确率。
文摘针对车载边缘计算环境中,边缘节点在为不同数据传输任务分配信道时产生的同信道干扰(Co-Channel Interferences,CCI)问题,本文形式化定义了车载边缘计算信道分配问题,致力于为不同数据传输任务合理分配信道,最大化数据传输任务的完成率.利用势博弈模型将全局优化的信道分配问题转化为边缘节点间的分布式信道分配博弈,并证明了信道分配博弈中纳什均衡的存在性.提出了基于激励的概率更新策略选择(Incentive-based Probability Update and Strategy Selection)算法,根据迭代中所选策略的激励值更新策略选择概率,并分析算法结果收敛至纳什均衡.最后,通过仿真实验验证了本文算法的收敛性以及收敛结果纳什均衡的有效性,且在任务完成率及信道利用效率上优于现有代表性算法.
文摘为解决车载自组织网络(Vehicle Ad Hoc Neteorks,VANETs)中基础设施建设的不足以及路侧单元(Roadside Uints,RSUs)通信范围受限的问题,提出停车边缘计算的思想,把拥有大量闲置计算资源的路边停放车辆组织成停车簇,令停车簇充当天然边缘计算节点,在RSUs或边缘计算服务器缺失情况下,及时执行周围移动车辆的卸载任务.分析了任务的完成时间,为最大化成功完成的任务数量,设计改进的SAC(Sampling-and-Classification,SAC)算法实现执行任务的停放车辆选择和资源的分配.基于真实城市道路停车调查的模拟实验结果证明,与其他几种任务调度策略相比,本文所提策略具有较高的任务完成率和卸载率.