针对车载边缘计算环境中,边缘节点在为不同数据传输任务分配信道时产生的同信道干扰(Co-Channel Interferences,CCI)问题,本文形式化定义了车载边缘计算信道分配问题,致力于为不同数据传输任务合理分配信道,最大化数据传输任务的完成率...针对车载边缘计算环境中,边缘节点在为不同数据传输任务分配信道时产生的同信道干扰(Co-Channel Interferences,CCI)问题,本文形式化定义了车载边缘计算信道分配问题,致力于为不同数据传输任务合理分配信道,最大化数据传输任务的完成率.利用势博弈模型将全局优化的信道分配问题转化为边缘节点间的分布式信道分配博弈,并证明了信道分配博弈中纳什均衡的存在性.提出了基于激励的概率更新策略选择(Incentive-based Probability Update and Strategy Selection)算法,根据迭代中所选策略的激励值更新策略选择概率,并分析算法结果收敛至纳什均衡.最后,通过仿真实验验证了本文算法的收敛性以及收敛结果纳什均衡的有效性,且在任务完成率及信道利用效率上优于现有代表性算法.展开更多
目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading...目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading and resource allocation algorithm based on DRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parking edge server,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(double deep q network,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。展开更多
文摘针对车载边缘计算环境中,边缘节点在为不同数据传输任务分配信道时产生的同信道干扰(Co-Channel Interferences,CCI)问题,本文形式化定义了车载边缘计算信道分配问题,致力于为不同数据传输任务合理分配信道,最大化数据传输任务的完成率.利用势博弈模型将全局优化的信道分配问题转化为边缘节点间的分布式信道分配博弈,并证明了信道分配博弈中纳什均衡的存在性.提出了基于激励的概率更新策略选择(Incentive-based Probability Update and Strategy Selection)算法,根据迭代中所选策略的激励值更新策略选择概率,并分析算法结果收敛至纳什均衡.最后,通过仿真实验验证了本文算法的收敛性以及收敛结果纳什均衡的有效性,且在任务完成率及信道利用效率上优于现有代表性算法.
文摘目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading and resource allocation algorithm based on DRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parking edge server,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(double deep q network,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。