期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
针对光伏发电功率预测的LSTformer模型 被引量:6
1
作者 刘世鹏 宁德军 马崛 《计算机工程与应用》 CSCD 北大核心 2024年第9期317-325,共9页
为了提高光伏发电功率预测精度,提出了一种基于长短期时序数据融合的Transformer生成式预测模型:LSTformer,能准确有效地预测光伏发电功率。LSTformer创新性地提出了时序分析模块(time series analysis,TSA)、时序特征融合模块(time ser... 为了提高光伏发电功率预测精度,提出了一种基于长短期时序数据融合的Transformer生成式预测模型:LSTformer,能准确有效地预测光伏发电功率。LSTformer创新性地提出了时序分析模块(time series analysis,TSA)、时序特征融合模块(time series feature fusion,TSFF)和多周期嵌入模块(cycleEmbed),利用数据融合解决难以提取多时间尺度时序特征问题。设计时间卷积前馈(time convolution feedforward,TCNforward)单元,在编解码的过程中进一步提取时序特征。利用某光伏电站实际历史发电数据,通过实验验证LSTformer模型在光伏发电功率预测领域得到最低的均方误差(mean squared error,MSE)、平均绝对误差(mean absolute error,MAE),并通过消融实验验证了各模块的有效性。 展开更多
关键词 TRANSFORMER 长短期记忆网络 跳跃-门控循环单元 光伏发电功率预测 时序数据预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部