期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进JSOA-SVM的地铁站台门故障诊断
1
作者 王若凡 朱松青 +2 位作者 杨柳 郝飞 徐涛 《噪声与振动控制》 北大核心 2025年第2期112-117,125,共7页
为准确地对地铁站台门进行故障诊断,并针对支持向量机(Support Vector Machine,SVM)在故障诊断中的参数选择问题,将跳蛛算法(Jumping Spider Optimization Algorithm,JSOA)用于SVM参数优化提升诊断性能,同时针对JSOA易陷入局部最优、收... 为准确地对地铁站台门进行故障诊断,并针对支持向量机(Support Vector Machine,SVM)在故障诊断中的参数选择问题,将跳蛛算法(Jumping Spider Optimization Algorithm,JSOA)用于SVM参数优化提升诊断性能,同时针对JSOA易陷入局部最优、收敛速度慢等不足,提出一种多策略改进跳蛛算法(Improved Jumping Spider Optimization Algorithm,IJSOA)优化SVM的站台门故障诊断方法。首先使用Teager能量算子、变分模态分解(Variational Mode Decomposition,VMD)以及精细复合多尺度模糊熵(Refined Composite Multiscale Fuzzy Entropy,RCMFE)提取信号特征;其次,通过IJSOA寻找SVM最优参数组合构建诊断模型;最后,使用提取的特征向量输入诊断模型实现站台门故障诊断。结果表明提出方法平均识别率为97.774%,诊断精度较其余几种方法更具优势,能够有效提升故障诊断分类效果。 展开更多
关键词 故障诊断 地铁站台门系统 变分模态分解(VMD) 跳蛛优化算法(JSOA) 支持向量机(SVM)
在线阅读 下载PDF
基于IMF-MFDE和GRU的水电机组故障诊断 被引量:2
2
作者 朱文鑫 王淑青 《水电能源科学》 北大核心 2024年第4期173-177,共5页
针对水电机组振动信号非平稳、非线性及强噪声的特点,提出了一种IMF多尺度波动散布熵(MFDE)结合门控循环单元(GRU)的故障诊断方法。首先,采用跳蛛优化算法(JSOA)寻找变分模态分解(VMD)最优参数,达到振动信号最佳分解降噪效果;其次,对分... 针对水电机组振动信号非平稳、非线性及强噪声的特点,提出了一种IMF多尺度波动散布熵(MFDE)结合门控循环单元(GRU)的故障诊断方法。首先,采用跳蛛优化算法(JSOA)寻找变分模态分解(VMD)最优参数,达到振动信号最佳分解降噪效果;其次,对分解得到的本征模态函数(IMF)进行重构,计算有效IMF的多尺度波动散布熵(MFDE)作为故障特征向量;最后,将特征向量输入GRU构建水电机组故障识别器。所提方法对实际水电站机组故障样本数据的故障识别率达97.83%,验证了该方法的有效性。 展开更多
关键词 水电机组振动信号 故障诊断 跳蛛优化算法 变分模态分解 多尺度波动散布熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部