期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于E-HRNet的路面破损区域识别方法 被引量:6
1
作者 张大伟 田抑阳 +1 位作者 徐培娟 钟琛 《北京交通大学学报》 CAS CSCD 北大核心 2023年第4期110-119,共10页
针对现有路面破损区域识别方法识别效率低、泛化性能差等问题,提出了一种基于深度高分辨率网络HRNet的路面坑槽和裂缝识别方法.采用车载单目相机实地采集路面坑槽和裂缝图像,并对图像进行预处理和标注,生成路面破损数据集.在原HRNet基础... 针对现有路面破损区域识别方法识别效率低、泛化性能差等问题,提出了一种基于深度高分辨率网络HRNet的路面坑槽和裂缝识别方法.采用车载单目相机实地采集路面坑槽和裂缝图像,并对图像进行预处理和标注,生成路面破损数据集.在原HRNet基础上,对其网络特征提取层的4个不同分辨率表征分别融合改进的卷积注意力模块,形成E-HRNet网络模型.为了提高EHRNet模型的推理速度,对其各步骤中不同分辨率分支的残差层数进行了优化,并采用联合损失函数对该模型进行监督训练.试验结果表明:E-HRNet网络模型对路面坑槽和裂缝区域分割的平均像素精度和平均交并比分别达到了94.53%和88.31%,与原HRNet网络模型相比,平均像素准确率增加了6.53%,平均交并比提升了5.38%,平均类别准确率提高了1.39%;模型检测帧率提高了30.3%,而模型体积则减少了42.6%,可满足模型轻量化和实时检测的需求;与DDRNet、Deep⁃labV3+等同类模型相比,E-HRNet网络模型对坑槽和裂缝区域的分割精度更高,有效地避免了漏检、误检以及边界模糊等问题的出现,具有更好的实时性和泛化性. 展开更多
关键词 视觉感知 E-HRNet 路面破损识别 路面坑槽 裂缝
在线阅读 下载PDF
融合流形特征的路面破损图像识别方法 被引量:1
2
作者 石陆魁 党磊 +1 位作者 杨璐 师胜利 《计算机应用与软件》 CSCD 2016年第2期150-152,196,共4页
研究路面破损图像识别的特征提取优化问题。为了克服常见的破损密度因子或坐标轴投影等特征提取时易受噪声影响,仅从底层视觉角度描述破损图像裂缝特性,不能高效、精确地区别不同裂缝的问题,提出一种融合流形特征的路面破损识别方法。... 研究路面破损图像识别的特征提取优化问题。为了克服常见的破损密度因子或坐标轴投影等特征提取时易受噪声影响,仅从底层视觉角度描述破损图像裂缝特性,不能高效、精确地区别不同裂缝的问题,提出一种融合流形特征的路面破损识别方法。首先利用流形学习中的Laplacian Eigenmaps算法提取图像的低维流形特征,令其作为图像裂缝的高层语义,然后将流形特征与破损密度因子或坐标轴投影等底层视觉特征融合,利用融合后的特征识别裂缝类别。仿真结果表明,将流形特征与其他特征融合后,可以从高层语义、底层视觉两个层面全方位的描述路面裂缝,极大地提高路面裂缝的识别精度。 展开更多
关键词 流形学习 路面破损图像识别 特征融合 拉普拉斯特征映射法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部