To investigate the effect of alternating magnetic field on austenite transformation process in the case of rapid heating,the austenite kinetics model of AISI 1045 steel was built for spot continual induction hardening...To investigate the effect of alternating magnetic field on austenite transformation process in the case of rapid heating,the austenite kinetics model of AISI 1045 steel was built for spot continual induction hardening(SCIH)process.The results shows that the effect of alternating magnetic field on austenite transformation fraction reaches the maximum(about 3%)when heating rate is the lowest.Relatively low magnetic flux density still has a certain effect on the austenite transformation process during the SCIH process.Concave surface structure can reduce the influence scope of alternating magnetic field on surface in all cases and the minimum influence scope appears when the feed path of inductor is longitudinal.Convex surface structure can minimize the influence scope of alternating magnetic field in depth when the feed path of inductor is longitudinal.The austenite distribution of transitional region on surface for horizontal movement is more uniform than that for longitudinal movement.The austenite distribution of transitional region in depth for longitudinal movement is more uniform than that for horizontal movement.The simulated results are consistent with the experimental results and the austenite transformation kinetics model developed for SCIH process is valid.展开更多
The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation an...The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
The tilting-train is very attractive to the railroad users in the world due to the advantage of high speed in curved track using pre-existing infrastructure of railway.Tilting-train has a unique allowable speed and me...The tilting-train is very attractive to the railroad users in the world due to the advantage of high speed in curved track using pre-existing infrastructure of railway.Tilting-train has a unique allowable speed and mechanism especially in curved track.In this work,when tilting-train is operated with the allowable speed,the behavior of roadbed is evaluated by examining its settlement and bearing capacity.Additionally,the stability of roadbed is estimated as the roadbed is in the condition of soft soil influenced by the weather effects and cyclic train loading.Numerical results show that the roadbed settlement satisfies the allowable settlement when the elastic moduli of upper roadbed and in-situ soil are greater than 3800 and 4600 kN/m2 for rail joint and 2300 and 3300 kN/m2 for continuous welded rail(CWR).展开更多
In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Bas...In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.展开更多
基金Projects(51905390,51575415)supported by the National Natural Science Foundation of China。
文摘To investigate the effect of alternating magnetic field on austenite transformation process in the case of rapid heating,the austenite kinetics model of AISI 1045 steel was built for spot continual induction hardening(SCIH)process.The results shows that the effect of alternating magnetic field on austenite transformation fraction reaches the maximum(about 3%)when heating rate is the lowest.Relatively low magnetic flux density still has a certain effect on the austenite transformation process during the SCIH process.Concave surface structure can reduce the influence scope of alternating magnetic field on surface in all cases and the minimum influence scope appears when the feed path of inductor is longitudinal.Convex surface structure can minimize the influence scope of alternating magnetic field in depth when the feed path of inductor is longitudinal.The austenite distribution of transitional region on surface for horizontal movement is more uniform than that for longitudinal movement.The austenite distribution of transitional region in depth for longitudinal movement is more uniform than that for horizontal movement.The simulated results are consistent with the experimental results and the austenite transformation kinetics model developed for SCIH process is valid.
基金Project(2021RC2011)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(U1934207,52178180)supported by the National Natural Science Foundation of ChinaProject(2021M703648)supported by the China Postdoctoral Science Foundation。
文摘The track geometry is a critical factor that affects the running safety and riding comfort of trains moving on a high-speed railway bridge.This study addresses the mapping relationship between the track deformation and lateral deformations of bridges.Equilibrium equations and natural boundary conditions of the track-bridge system are established based on the energy variational principle,and an analytical solution is derived for the track deformation accounting for lateral bridge deformations.A five-span simply-supported bridge with continuous welded rail has been selected as the case study.The mapping rail deformations are compared to the finite element results,and both results agree well with each other,validating the analytical method proposed in this paper.The influence factors on the mapping rail deformation are further evaluated.Results show that the mapping rail deformation is consistent with the girder displacement at the area that is away from the girder ends when the flexural stiffness ratio between the track and the bridge girder is low.The interlayer stiffness has a significant effect on the mapping rail deformation when the track flexural stiffness is of a high value.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金supported by the 2014 Inje University research grant
文摘The tilting-train is very attractive to the railroad users in the world due to the advantage of high speed in curved track using pre-existing infrastructure of railway.Tilting-train has a unique allowable speed and mechanism especially in curved track.In this work,when tilting-train is operated with the allowable speed,the behavior of roadbed is evaluated by examining its settlement and bearing capacity.Additionally,the stability of roadbed is estimated as the roadbed is in the condition of soft soil influenced by the weather effects and cyclic train loading.Numerical results show that the roadbed settlement satisfies the allowable settlement when the elastic moduli of upper roadbed and in-situ soil are greater than 3800 and 4600 kN/m2 for rail joint and 2300 and 3300 kN/m2 for continuous welded rail(CWR).
基金Projects(U1334205,51205418)supported by the National Natural Science Foundation of ChinaProject(2014T002-A)supported by the Science and Technology Research Program of China Railway CorporationProject(132014)supported by the Fok Ying Tong Education Foundation of China
文摘In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.