船舶智能化的发展对船舶视觉感知系统实时目标检测能力提出了更高要求,YOLOv5作为YOLO(You Only Look Once)系列算法的最新成果,以良好的速度和精度被广泛应用于海上目标检测.但在实际海上航行中往往伴随着多变的自然条件和复杂的活动场...船舶智能化的发展对船舶视觉感知系统实时目标检测能力提出了更高要求,YOLOv5作为YOLO(You Only Look Once)系列算法的最新成果,以良好的速度和精度被广泛应用于海上目标检测.但在实际海上航行中往往伴随着多变的自然条件和复杂的活动场景,这使其在复杂海域中小目标检测能力和多目标分类效果并不理想.因此,为提升YOLOv5在复杂海域中目标检测能力,本文提出多路径聚合网络结构(MPANet).在自底向上特征传递过程中融合多层次特征信息以增强多尺度定位能力,同时结合SimAM注意力模块和Transformer结构增强高阶特征语义信息.在自定义数据集中实验结果表明:MPANet-YOLOv5相较于YOLOv5模型AP提升了5.4%,召回率提升了3.3%,AP0.5提升了3.3%,AP_(0.5:0.95)提升了2.2%,不同海域测试结果显示MPANet-YOLOv5海面小目标检测能力明显优于YOLOv5.展开更多
为实现命名数据网络(NDN,name data networking)域间内容互访,提出了一种NDN域间多路径路由机制——MIRNDN。该机制使任意自治系统(AS,autonomous system)仅维护自身及客户AS可达内容的路由信息并聚合路由信息以缓解域间路由的可扩展性...为实现命名数据网络(NDN,name data networking)域间内容互访,提出了一种NDN域间多路径路由机制——MIRNDN。该机制使任意自治系统(AS,autonomous system)仅维护自身及客户AS可达内容的路由信息并聚合路由信息以缓解域间路由的可扩展性问题;采用"无谷底"路由策略引导请求非自身和客户AS内容的Interest报文从多路径探索内容,且请求聚合、网络缓存和自适应转发能优化探索;维护多路径路由信息以支持Interest多路径转发。从理论上分析了MIRNDN机制下FIB大小、路由更新的收敛时间和通信开销,在实际因特网AS级别拓扑上的仿真实验表明MIRNDN缓解了域间路由的可扩展性问题,路由更新的收敛时间较短,通信开销适量,并有效地减少了Interest报文的不必要转发。展开更多
复杂网络最短路径经典算法的处理效率较低,不适用于大规模复杂网络,而现有近似算法通用性有限,且计算准确率不理想,不能满足规模日益扩大的复杂网络中的最短路径计算需求。针对于此,提出基于 k -shell的复杂网络最短路径近似算法。算法...复杂网络最短路径经典算法的处理效率较低,不适用于大规模复杂网络,而现有近似算法通用性有限,且计算准确率不理想,不能满足规模日益扩大的复杂网络中的最短路径计算需求。针对于此,提出基于 k -shell的复杂网络最短路径近似算法。算法利用节点的k -shell值进行网络划分并引导搜索路径,利用超点聚合处理k -shell子网来降低路径搜索中节点和连边的规模,通过在路径搜索过程使用双向搜索树方法提高算法的计算效率和准确率。实验结果表明,算法通用性较好,在现实与仿真大规模复杂网络中均具有较高的计算效率和准确率。展开更多
为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机...为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机理构建了专用的运动模糊图像数据集。在不增加网络参数的前提下,采用共享权重的孪生网络设计,并引入先验知识,将清晰图像的特征学习用于模糊图像的特征提取,以同时实现对清晰与模糊图像的精准检测。此外,设计了部分深度可分离卷积替代普通卷积,显著减少了网络的参数量与计算量,并提升了学习性能。为进一步优化特征融合质量,提出跨层路径聚合特征金字塔网络,有效利用低级特征的细节信息和高级特征的语义信息。实验结果表明,所提LEMBD网络在运动模糊图像目标检测任务中的性能优于传统目标检测方法和主流运动模糊检测算法,能够为精确制导任务提供更精准的目标相对位置信息。展开更多
文摘船舶智能化的发展对船舶视觉感知系统实时目标检测能力提出了更高要求,YOLOv5作为YOLO(You Only Look Once)系列算法的最新成果,以良好的速度和精度被广泛应用于海上目标检测.但在实际海上航行中往往伴随着多变的自然条件和复杂的活动场景,这使其在复杂海域中小目标检测能力和多目标分类效果并不理想.因此,为提升YOLOv5在复杂海域中目标检测能力,本文提出多路径聚合网络结构(MPANet).在自底向上特征传递过程中融合多层次特征信息以增强多尺度定位能力,同时结合SimAM注意力模块和Transformer结构增强高阶特征语义信息.在自定义数据集中实验结果表明:MPANet-YOLOv5相较于YOLOv5模型AP提升了5.4%,召回率提升了3.3%,AP0.5提升了3.3%,AP_(0.5:0.95)提升了2.2%,不同海域测试结果显示MPANet-YOLOv5海面小目标检测能力明显优于YOLOv5.
文摘为实现命名数据网络(NDN,name data networking)域间内容互访,提出了一种NDN域间多路径路由机制——MIRNDN。该机制使任意自治系统(AS,autonomous system)仅维护自身及客户AS可达内容的路由信息并聚合路由信息以缓解域间路由的可扩展性问题;采用"无谷底"路由策略引导请求非自身和客户AS内容的Interest报文从多路径探索内容,且请求聚合、网络缓存和自适应转发能优化探索;维护多路径路由信息以支持Interest多路径转发。从理论上分析了MIRNDN机制下FIB大小、路由更新的收敛时间和通信开销,在实际因特网AS级别拓扑上的仿真实验表明MIRNDN缓解了域间路由的可扩展性问题,路由更新的收敛时间较短,通信开销适量,并有效地减少了Interest报文的不必要转发。
文摘复杂网络最短路径经典算法的处理效率较低,不适用于大规模复杂网络,而现有近似算法通用性有限,且计算准确率不理想,不能满足规模日益扩大的复杂网络中的最短路径计算需求。针对于此,提出基于 k -shell的复杂网络最短路径近似算法。算法利用节点的k -shell值进行网络划分并引导搜索路径,利用超点聚合处理k -shell子网来降低路径搜索中节点和连边的规模,通过在路径搜索过程使用双向搜索树方法提高算法的计算效率和准确率。实验结果表明,算法通用性较好,在现实与仿真大规模复杂网络中均具有较高的计算效率和准确率。
文摘为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机理构建了专用的运动模糊图像数据集。在不增加网络参数的前提下,采用共享权重的孪生网络设计,并引入先验知识,将清晰图像的特征学习用于模糊图像的特征提取,以同时实现对清晰与模糊图像的精准检测。此外,设计了部分深度可分离卷积替代普通卷积,显著减少了网络的参数量与计算量,并提升了学习性能。为进一步优化特征融合质量,提出跨层路径聚合特征金字塔网络,有效利用低级特征的细节信息和高级特征的语义信息。实验结果表明,所提LEMBD网络在运动模糊图像目标检测任务中的性能优于传统目标检测方法和主流运动模糊检测算法,能够为精确制导任务提供更精准的目标相对位置信息。