期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Penman-Monteith模型和路径排序算法相结合的草莓灌溉方法与验证 被引量:6
1
作者 张宇 赵春江 +3 位作者 林森 郭文忠 文朝武 龙洁花 《智慧农业(中英文)》 2021年第3期116-128,共13页
灌溉是影响作物产量的重要因素。为更加有效、精确地控制设施作物的灌溉,本研究以“章姬”草莓为例,将作物实时生长特征引入灌溉决策模型中,将Penman-Monteith(P-M)模型和知识推理相结合对草莓的灌溉展开研究。首先明确影响草莓灌溉的... 灌溉是影响作物产量的重要因素。为更加有效、精确地控制设施作物的灌溉,本研究以“章姬”草莓为例,将作物实时生长特征引入灌溉决策模型中,将Penman-Monteith(P-M)模型和知识推理相结合对草莓的灌溉展开研究。首先明确影响草莓灌溉的因子和影响系数,然后建立“章姬”草莓灌溉知识结构和草莓灌溉知识图谱,接着应用路径排序算法(Path Ranking Algorithm,PRA)对P-M模型计算的灌溉值进行调整,实现草莓的精准灌溉。知识推理中每个专家的灌溉调整策略都不相同,本试验以草莓产量最大为目标,选择概率值最高的一组灌溉推理值对灌溉进行调整。试验结果表明,在规定时间采收的情况下,本研究提出的基于Penman-Monteith模型和路径排序算法相结合的方法比传统P-M模型方法的果实总产量、单株果实均产量和果实均重百分比分别提高2478.5g、20.65g和12.15%(单个果实均重提高1.65g),硬度提升了0.1 kg/cm^(2)。表明该方法根据作物生长状态对作物灌溉进行调整合理,为精确灌溉提供了新的思路。 展开更多
关键词 人工智能 知识图谱 知识推理 精准灌溉 路径排序算法 草莓 PENMAN-MONTEITH
在线阅读 下载PDF
基于双层随机游走的关系推理算法 被引量:14
2
作者 刘峤 韩明皓 +2 位作者 江浏祎 刘瑶 耿技 《计算机学报》 EI CSCD 北大核心 2017年第6期1275-1290,共16页
关系推理是知识库构建的关键技术之一,典型应用场景包括关系预测和实体链接等.关系推理研究的问题是如何利用知识库中已有的知识推理得到新的知识.当前主流知识库采用的推理模型包括潜在因子模型和随机游走模型.前者将实体和关系映射到... 关系推理是知识库构建的关键技术之一,典型应用场景包括关系预测和实体链接等.关系推理研究的问题是如何利用知识库中已有的知识推理得到新的知识.当前主流知识库采用的推理模型包括潜在因子模型和随机游走模型.前者将实体和关系映射到一个低维实数向量空间,通过向量相似度计算实现推理.后者基于一阶谓词逻辑进行实体间的关系推理,通过随机算法降低算法复杂度.比较而言,前者由于需要进行大规模矩阵运算而计算复杂度较高,后者则因为采用了随机采样方法,难以完全利用知识库中已有的结构化信息,而导致召回率较低.通过研究现有随机游走模型基本假设存在的问题,提出了两项新的推理建模假设.首先,以PRA为代表的随机游走模型采用关系单向性假设,将知识库中的实体关系三元组视为一阶Horn子句,将关系处理为主语和宾语间的偏序关系,该文提出的假设是,尽管实体间的关系从字面和句法上具有方向性,但关系所包含的信息对两侧实体而言具有语义上的双向性,允许关系推理算法利用从宾语到主语的逆向关系语义进行知识推理;其次,PRA算法采用一阶谓词逻辑进行推理,并通过引入一个随机采样机制来避免穷举搜索和提高计算速度,该文认为这是导致PRA算法及类似算法无法完全利用知识库中已有信息的一个主要原因,据此提出了一个新的假设,即知识库中特定关系子网的拓扑结构所包含的信息可以被利用来改善随机游走模型的关系推理结果,为验证上述假设的有效性,提出了一种基于双层随机游走策略的关系推理新算法,在WN18、FB15K和FB40K等公开数据集上的实验结果表明,该算法能够有效地提高基于随机游走的关系推理模型的准确性和召回率,性能显著优于当前主流的基于潜在因子模型的关系推理算法. 展开更多
关键词 关系推理 统计关系学习 知识库扩容 随机游走 路径排序算法 人工智能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部