期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
路基土回弹模量湿度调整系数预估研究 被引量:12
1
作者 林小平 李兴华 +1 位作者 凌建明 周亮 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第10期1490-1494,共5页
选取了几种代表性的路基土样,采用UTM(万能材料试验机)动力三轴试验系统,测试不同湿度下的回弹模量,分析湿度对路基土回弹模量的影响规律,利用测试结果,对Witczak回弹模量湿度调整系数模型中的参数进行校正,建立适用于我国粗细粒土组的... 选取了几种代表性的路基土样,采用UTM(万能材料试验机)动力三轴试验系统,测试不同湿度下的回弹模量,分析湿度对路基土回弹模量的影响规律,利用测试结果,对Witczak回弹模量湿度调整系数模型中的参数进行校正,建立适用于我国粗细粒土组的湿度调整系数预估模型.结果表明,路基土湿度在最佳含水率饱和度±20%区间内,模量调整系数与饱和度差值近似呈线性关系,而当湿度低于最佳含水率饱和度20%以上时,模量调整系数受饱和度变化的影响很小.针对不同类型土组,应用建立的模型,推荐了回弹模量的湿度调整系数,可结合室内回弹模量测试,反算路基在实际湿度状况下的回弹模量值. 展开更多
关键词 路基土回弹模量 湿度 调整系数 预估模型
在线阅读 下载PDF
Prediction of resilient modulus for subgrade soils based on ANN approach 被引量:12
2
作者 ZHANG Jun-hui HU Jian-kun +2 位作者 PENG Jun-hui FAN Hai-shan ZHOU Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期898-910,共13页
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil... The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation. 展开更多
关键词 resilient modulus subgrade soils artificial neural network multi-population genetic algorithm prediction method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部