期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
归纳式迁移学习在跨领域情感倾向性分析中的应用 被引量:2
1
作者 孟佳娜 赵丹丹 +1 位作者 于玉海 孙世昶 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期175-183,共9页
在解决情感倾向性分析问题中,传统的监督学习和半监督学习都是在训练和测试所用的数据来自相同分布的假设基础之上的,但在很多情况下不能满足这样的假设,这就产生了跨领域的情感倾向性分析问题.在跨领域情感倾向性分析中,提出一种基于... 在解决情感倾向性分析问题中,传统的监督学习和半监督学习都是在训练和测试所用的数据来自相同分布的假设基础之上的,但在很多情况下不能满足这样的假设,这就产生了跨领域的情感倾向性分析问题.在跨领域情感倾向性分析中,提出一种基于归纳式迁移学习的图模型,通过图模型建立源领域和目标领域数据之间的关联,使得源领域的数据通过图模型学习目标领域数据在特征和实例上的特点.同时,利用归纳式迁移学习方法使用少量的目标领域的已标注数据进行训练,从而提高了情感分类器在目标领域的分类准确率,极大地改进了跨领域情感倾向性分析的效果.在标准数据集上进行了实验,并与监督学习方法 SVM、半监督学习方向TSVM以及其它3种常用的迁移学习方法进行了对比,对比结果显示本文方法显著的高于SVM和TSVM,并在大多数数据集上优于其它3种迁移学习方法,实验结果表明该方法是有效的. 展开更多
关键词 归纳式学习 跨领域情感倾向性分析 迁移学习 图模型
在线阅读 下载PDF
基于双重选择策略的跨领域情感倾向性分析 被引量:5
2
作者 马凤闸 吴江宁 杨光飞 《情报学报》 CSSCI 北大核心 2012年第11期1202-1209,共8页
情感倾向性分析旨在识别评论中隐含的情感信息,在产品声誉分析、舆情监控、个性推荐等方面具有广阔的应用前景。在评测消费者对新发布产品的态度时,本产品领域中可供参考的已分类评论数据往往较少,而其他相关领域可能存在大量的已分... 情感倾向性分析旨在识别评论中隐含的情感信息,在产品声誉分析、舆情监控、个性推荐等方面具有广阔的应用前景。在评测消费者对新发布产品的态度时,本产品领域中可供参考的已分类评论数据往往较少,而其他相关领域可能存在大量的已分类的评论数据,利用其他产品已标注的评论数据对新产品进行情感倾向性分析,属于跨领域的情感分类问题。针对这一问题,本文引入迁移学习机制,将经典迁移学习TrAdaBoost算法的样本迁移机制应用于情感倾向性分析,并针对积极类和消极类分类精度不均衡问题提出了改进策略,首先根据评论样本权重进行第一次选择,其次结合分类置信度对评论样本进行第二次选择。实验结果表明,在整体分类精度有所提高的前提下,改进算法的优势在于均衡了积极类和消极类的分类精度,使得分类结果更具实际参考价值。 展开更多
关键词 情感倾向性 领域 迁移学习 双重选择
在线阅读 下载PDF
结合预训练模型和数据增强的跨领域属性级情感分析研究 被引量:1
3
作者 陈舸 王中卿 《计算机科学》 北大核心 2025年第8期300-307,共8页
属性级情感分析(ABSA)是一项细粒度情感分析任务,旨在识别文本中的具体属性并探测其情感倾向。针对ABSA模型因无法适应不同领域的语言风格而导致性能不佳以及目标领域缺乏标注数据的问题,提出了一种结合预训练模型的跨领域属性级情感分... 属性级情感分析(ABSA)是一项细粒度情感分析任务,旨在识别文本中的具体属性并探测其情感倾向。针对ABSA模型因无法适应不同领域的语言风格而导致性能不佳以及目标领域缺乏标注数据的问题,提出了一种结合预训练模型的跨领域属性级情感分析方法。该方法利用预训练模型对目标领域文本进行标签生成,再利用大语言模型重新生成更具目标领域风格的自然语句,最后将生成的样本和源领域样本组合训练,以对目标领域进行预测。在SemEval语料库的restaurant和laptop数据集以及一个公开的网络服务评论数据集上进行实验,结果表明,与现有跨领域情感分析方法相比,所提方法在F1值上至少提升了5.33%,充分证明了该方法的有效性。 展开更多
关键词 领域情感分析 预训练模型 T5 GPT
在线阅读 下载PDF
基于随机游走模型的跨领域倾向性分析研究 被引量:11
4
作者 吴琼 谭松波 +2 位作者 许洪波 段洣毅 程学旗 《计算机研究与发展》 EI CSCD 北大核心 2010年第12期2123-2131,共9页
近年来,研究者们已经在跨领域倾向性分析方面取得了一些进展.然而,现有的方法和系统往往只根据已标注文本或者已标注情感词对目标领域文本进行倾向性分析,却缺乏一个统一的模型框架将文本与情感词之间全部知识进行有机的融合.提出了一... 近年来,研究者们已经在跨领域倾向性分析方面取得了一些进展.然而,现有的方法和系统往往只根据已标注文本或者已标注情感词对目标领域文本进行倾向性分析,却缺乏一个统一的模型框架将文本与情感词之间全部知识进行有机的融合.提出了一种基于随机游走模型的跨领域倾向性分析方法,该模型能够同时利用源领域和目标领域文本与词之间的所有关系来对文本与词进行互相增强,旨在将文本之间的关系、词之间的关系、文本与词之间的相互关系集成到一个完整的理论框架中.实验结果表明,提出的算法能大幅度提高跨领域倾向性分析的精度. 展开更多
关键词 中文信息处理 随机游走 图模型 领域 倾向性分析
在线阅读 下载PDF
基于领域本体、情感词典的商品评论倾向性分析 被引量:20
5
作者 董丽丽 赵繁荣 张翔 《计算机应用与软件》 CSCD 北大核心 2014年第12期104-108,194,共6页
文本倾向性分析已成为当前自然语言处理领域的研究热点,其研究成果具有极高的应用价值。针对网络在线中文评论的特点,基于领域本体与情感词典对商品评论倾向性进行分析。其主要思想是首先构建面向商品论坛的领域本体;其次利用情感词典... 文本倾向性分析已成为当前自然语言处理领域的研究热点,其研究成果具有极高的应用价值。针对网络在线中文评论的特点,基于领域本体与情感词典对商品评论倾向性进行分析。其主要思想是首先构建面向商品论坛的领域本体;其次利用情感词典与上下文极性算法计算情感词极性;再次通过将本体与SBV算法相结合,实现评价对象和评价词的二元组抽取;最后完成句子的倾向性分析。实验结果表明,有效提高了句子级倾向性分析的准确率。 展开更多
关键词 倾向性分析 领域本体 情感词典 上下文极性 评价对象抽取
在线阅读 下载PDF
跨领域倾向性分析相关技术研究 被引量:10
6
作者 吴琼 谭松波 +2 位作者 张刚 段洣毅 程学旗 《中文信息学报》 CSCD 北大核心 2010年第1期77-83,共7页
该文主要研究文本的倾向性分析问题,即判断文本中的论断是正面还是负面的。已有的研究表明,监督分类方法对倾向性分析很有效。但是,多数情况下,已有的标注数据与待判断倾向性的数据不属于同一个领域,此时监督分类算法的性能明显下降。... 该文主要研究文本的倾向性分析问题,即判断文本中的论断是正面还是负面的。已有的研究表明,监督分类方法对倾向性分析很有效。但是,多数情况下,已有的标注数据与待判断倾向性的数据不属于同一个领域,此时监督分类算法的性能明显下降。为解决此问题,该文提出一个算法,将文本的情感倾向性与图排序算法结合起来进行跨领域倾向性分析,该算法在图排序算法基础上,利用训练域文本的准确标签与测试域文本的伪标签来迭代进行倾向性分析。得到迭代最终结果后,为充分利用其中倾向性判断较为准确的测试文本来提高整个测试集倾向性分析的精度,将这些较准确的测试文本作为"种子",进一步通过EM算法迭代进行跨领域倾向性分析。实验结果表明,该文提出的方法能大幅度提高跨领域倾向性分析的精度。 展开更多
关键词 计算机应用 中文信息处理 领域 倾向性分析 图排序 EM算法
在线阅读 下载PDF
基于元优化特征解耦的多模态跨域情感分析算法
7
作者 贾熹滨 李宸 +4 位作者 王珞 张沐晨 刘潇健 张旸旸 温家凯 《计算机研究与发展》 北大核心 2025年第11期2697-2709,共13页
多模态情感分析旨在利用多模态点评等数据识别用户情感倾向.为实现存在域偏移的跨域应用,常用无监督领域自适应方法.然而,该类方法着重于领域不变特征提取,忽略了目标领域特定特征的重要作用.为此,提出基于元优化的领域不变及领域特定... 多模态情感分析旨在利用多模态点评等数据识别用户情感倾向.为实现存在域偏移的跨域应用,常用无监督领域自适应方法.然而,该类方法着重于领域不变特征提取,忽略了目标领域特定特征的重要作用.为此,提出基于元优化的领域不变及领域特定特征解耦网络.首先,通过嵌入情感适配器对预训练大模型微调,建立图文融合情感特征编码器.进而,构建基于因子分解的特征解耦模块,分别利用领域对抗及领域分类、协同独立性约束,实现知识可传递的领域不变特征编码的同时,提取领域特定特征以增强目标域情感分类性能.为保证特征解耦与情感分类的总体优化方向一致性,提出基于元学习的元优化训练策略,实现情感分析网络的协同优化.基于MVSA和Yelp数据集构建的双向情感迁移任务的对比实验表明,较之其他先进的图文情感迁移算法,所提算法于双向情感迁移任务的精确率、召回率和F1值3项评价指标均取得了优异的性能. 展开更多
关键词 多模态情感分析 无监督领域自适应 领域情感分类 特征解耦 元优化
在线阅读 下载PDF
基于可信标签扩展传递的跨领域倾向性分析
8
作者 侯秀艳 刘培玉 孟凡龙 《计算机应用研究》 CSCD 北大核心 2016年第5期1379-1383,共5页
针对传统监督分类方法不能很好地处理不同领域中服从不同分布的数据这一问题进行了研究,提出了一种基于可信标签扩展传递的半监督分类算法。情感种子词与目标领域待标注词之间按照相似度进行标签传递,将具有可信标签的词迭代移入情感种... 针对传统监督分类方法不能很好地处理不同领域中服从不同分布的数据这一问题进行了研究,提出了一种基于可信标签扩展传递的半监督分类算法。情感种子词与目标领域待标注词之间按照相似度进行标签传递,将具有可信标签的词迭代移入情感种子词集实现扩展,结合目标领域词的先验情感分计算出最终情感分,从而有效地实现跨领域倾向性分析。实验表明,该方法能够大幅度提高跨领域情感分析的准确率。 展开更多
关键词 自然语言处理 领域 倾向性分析 标签传递
在线阅读 下载PDF
特征和实例迁移相融合的跨领域倾向性分析 被引量:1
9
作者 孟佳娜 于玉海 +1 位作者 赵丹丹 孙世昶 《中文信息学报》 CSCD 北大核心 2015年第4期74-79,143,共7页
在情感倾向性分析中,经常会发生由于领域知识的变化引起的分类精度下降的问题。为解决此类问题,该文提出了一种基于实例和特征相融合的知识迁移方法,首先通过三部图构建了源领域和目标领域的领域依赖特征词之间的关联,并得到一个公共的... 在情感倾向性分析中,经常会发生由于领域知识的变化引起的分类精度下降的问题。为解决此类问题,该文提出了一种基于实例和特征相融合的知识迁移方法,首先通过三部图构建了源领域和目标领域的领域依赖特征词之间的关联,并得到一个公共的语义空间来对原有的向量空间模型进行重建,然后再通过带偏置的马尔科夫模型,建立源领域和目标领域实例之间的关联,从而有效的将源领域学习到的情感倾向性知识迁移到目标领域中,高于其它方法的实验结果验证了算法的有效性。 展开更多
关键词 领域倾向性分析 迁移学习 偏置的马尔科夫模型
在线阅读 下载PDF
基于典型相关分析的多视图跨领域情感分类 被引量:6
10
作者 黄贤立 《计算机工程》 CAS CSCD 北大核心 2010年第24期186-188,共3页
跨领域的文本分类,是指利用有标记领域的知识去帮助另一个概率分布不同的,未标记领域的知识进行分类的问题。从多视图学习的视角提出一个新的跨领域文本分类的方法(MTV算法)。通过在核空间典型相关分析中引入与标记相关的信息,MTV算法... 跨领域的文本分类,是指利用有标记领域的知识去帮助另一个概率分布不同的,未标记领域的知识进行分类的问题。从多视图学习的视角提出一个新的跨领域文本分类的方法(MTV算法)。通过在核空间典型相关分析中引入与标记相关的信息,MTV算法可以得到一个判别性能更优的公共子空间。在多个情感类文本数据上的实验表明,MTV算法可以大大提升传统监督式学习算法面对领域迁移时的分类性能,并且在引入判别式的核空间典型相关分析后,进一步优化性能。 展开更多
关键词 领域学习 迁移学习 情感分类 文本分类 核空间典型相关分析
在线阅读 下载PDF
领域对齐对抗的无监督跨领域文本情感分析算法 被引量:3
11
作者 贾熹滨 曾檬 +1 位作者 米庆 胡永利 《计算机研究与发展》 EI CSCD 北大核心 2022年第6期1255-1270,共16页
在实际应用场景中,情感分析技术为自动判别文本情感极性提供了有效的决策及解决方案,但是文本情感分析技术依赖于大量的标定样本.为了减小对人工标注的依赖,有研究者提出了基于领域自适应的跨领域情感分析技术.该技术面向跨领域文本情... 在实际应用场景中,情感分析技术为自动判别文本情感极性提供了有效的决策及解决方案,但是文本情感分析技术依赖于大量的标定样本.为了减小对人工标注的依赖,有研究者提出了基于领域自适应的跨领域情感分析技术.该技术面向跨领域文本情感分析任务,将经由标定样本训练的源领域模型,迁移至无标定的目标领域.然而目前的领域自适应技术仅从单个角度进行迁移,即减小领域专有特征差异或提取领域不变特征.因此考虑到跨领域文本数据同时包含领域专有特征和领域不变特征的特点,提出了一种领域对齐对抗的无监督跨领域文本情感分析算法.该算法通过渐进式的迁移策略,逐层减小不同语义层的领域差异,并在高层语义子空间通过协同优化的领域自适应算法,实现跨领域文本数据的领域知识迁移.在2个公开跨领域文本情感数据集上的24组跨领域文本情感分类实验结果表明,与4类领域自适应算法中代表性的和当前表现最优的方法相比,领域对齐对抗的无监督跨领域文本情感分析算法在24组实验中取得了最高的平均分类准确率,同时结合迁移性能分析结果和特征分布可视化结果,证明该算法一定程度上提升了现有无监督跨领域文本情感分析算法的分类性能和迁移性能. 展开更多
关键词 领域情感分类 迁移学习 无监督领域自适应 情感分析 协同优化
在线阅读 下载PDF
基于贝叶斯网的跨领域情感分析方法 被引量:4
12
作者 刘慧清 郭延哺 李维华 《计算机应用与软件》 北大核心 2020年第12期119-126,共8页
基于机器学习的情感分析依赖于充足的标签样本。针对标签样本不足以及情感分类器存在的领域适应性问题,提出一种基于贝叶斯网的跨领域情感分析方法。基于贝叶斯网,对源领域和目标领域构建局部特征模型;研究局部特征模型的融合方法并构... 基于机器学习的情感分析依赖于充足的标签样本。针对标签样本不足以及情感分类器存在的领域适应性问题,提出一种基于贝叶斯网的跨领域情感分析方法。基于贝叶斯网,对源领域和目标领域构建局部特征模型;研究局部特征模型的融合方法并构建全局特征模型;基于全局特征模型建立情感知识的迁移方法并训练分类器。在Amazon数据集上进行实验,结果表明,该方法在一定程度上提高了目标领域文本的情感分类精度,以及分类器在目标领域中的适应性。 展开更多
关键词 领域情感分析 贝叶斯网 融合 迁移
在线阅读 下载PDF
基于CNN的方面级跨领域情感分析研究 被引量:7
13
作者 孟佳娜 吕品 +1 位作者 于玉海 郑志坤 《计算机工程与应用》 CSCD 北大核心 2022年第16期175-183,共9页
近年来,方面级情感分析吸引了越来越多学者的关注,但方面级跨领域情感分析存在没有标注数据,难以获得好的分类结果的问题。将上下文特征与方面特征进行融合,构建基于卷积神经网络和门控单元的情感分类模型,并利用少量目标领域数据集对... 近年来,方面级情感分析吸引了越来越多学者的关注,但方面级跨领域情感分析存在没有标注数据,难以获得好的分类结果的问题。将上下文特征与方面特征进行融合,构建基于卷积神经网络和门控单元的情感分类模型,并利用少量目标领域数据集对模型进行微调来实现迁移学习,再用迁移学习后的模型对目标领域的数据进行方面级情感分析,有效解决了训练样本不足、准确率低的问题。人工标注了适用于方面级跨领域情感分析的中、英文语料,所提出的方法在中文数据集最优的F1值达到92.19%,英文数据集最优的F1值达到了86.18%,实验结果表明基于卷积神经网络的方面级跨领域情感分析方法有效提高了目标领域的情感分类准确性。 展开更多
关键词 方面级情感分析 迁移学习 领域 卷积神经网络
在线阅读 下载PDF
基于胶囊网络的方面级跨领域情感分析
14
作者 孟佳娜 吕品 +2 位作者 于玉海 孙世昶 林鸿飞 《计算机应用》 CSCD 北大核心 2022年第12期3700-3707,共8页
在跨领域情感分析任务中,目标领域带标签样本严重不足,并且不同领域间的特征分布差异较大,特征所表达的情感极性也有很大差别,这些问题都导致了分类准确率较低。针对以上问题,提出一种基于胶囊网络的方面级跨领域情感分析方法。首先,通... 在跨领域情感分析任务中,目标领域带标签样本严重不足,并且不同领域间的特征分布差异较大,特征所表达的情感极性也有很大差别,这些问题都导致了分类准确率较低。针对以上问题,提出一种基于胶囊网络的方面级跨领域情感分析方法。首先,通过BERT预训练模型获取文本的特征表示;其次,针对细粒度的方面级情感特征,采用循环神经网络(RNN)将上下文特征与方面特征进行融合;然后,使用胶囊网络配合动态路由来区分重叠特征,并构建基于胶囊网络的情感分类模型;最后,利用目标领域的少量数据对模型进行微调来实现跨领域迁移学习。所提方法在中文数据集上的最优的F1值达到95.7%,英文数据集上的最优的F1值达到了91.8%,有效解决了训练样本不足造成的准确率低的问题。 展开更多
关键词 方面级情感分析 领域 胶囊网络 循环神经网络 预训练
在线阅读 下载PDF
面向跨领域情感分类的统一框架 被引量:10
15
作者 吴琼 刘悦 +3 位作者 沈华伟 张瑾 许洪波 程学旗 《计算机研究与发展》 EI CSCD 北大核心 2013年第8期1683-1689,共7页
文本的情感分类问题,即判断文本中的论断是持支持态度还是反对态度.已有的研究表明,监督分类方法对情感分类很有效.但是多数情况下,已有的标注数据与待判断情感类别的数据不属于同一个领域,此时监督分类算法的性能明显下降,由此产生的... 文本的情感分类问题,即判断文本中的论断是持支持态度还是反对态度.已有的研究表明,监督分类方法对情感分类很有效.但是多数情况下,已有的标注数据与待判断情感类别的数据不属于同一个领域,此时监督分类算法的性能明显下降,由此产生的即为跨领域情感分类问题.为解决此问题,提出一个统一框架,分多阶段进行跨领域情感分类:首先利用训练域文本的准确标签来得到测试域文本的初始标签;然后将测试域建成一个加权网络,将一些较准确的测试文本作为"源点"和"汇点",进一步利用热传导思想迭代进行跨领域情感分类.实验结果表明,此方法能大幅度提高跨领域情感分类的精度. 展开更多
关键词 领域 情感分类 热传导模型 倾向性分析 迁移学习
在线阅读 下载PDF
基于词向量的跨领域中文情感词典构建方法 被引量:13
16
作者 冯超 梁循 +2 位作者 李亚平 周小平 李晓菲 《数据采集与处理》 CSCD 北大核心 2017年第3期579-587,共9页
情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同... 情感分析已经成为当今自然语言处理领域的热点问题。对于文本的自动化、半监督式的情感分析研究具有广泛的理论和实用价值。基于情感词典的情感倾向分析方法是文本情感分析的一种重要手段。然而,中文词汇在不同领域中的情感倾向不尽相同,一词多义现象明显。同时,不同领域中的情感词也具有专业性、领域性的特点。针对这些问题,本文提出一种基于词向量相似度的半监督情感极性判断算法(Sentiment orientation from word vector,SO-WV),并依据该算法设计出一种跨领域的中文情感词典构建方法。实验证明,本文所设计的情感词典构建方法能有效地对情感词情感倾向进行判断。算法不仅在不同领域的情感词典建立上具有良好的可移植性,同时还具有专业性、领域性的特点。 展开更多
关键词 情感分析 情感词典 词向量 领域
在线阅读 下载PDF
改进枢轴特征选择的跨领域情感分类 被引量:3
17
作者 梁俊葛 相艳 +3 位作者 张周彬 熊馨 邵党国 马磊 《计算机工程与设计》 北大核心 2020年第11期3193-3198,共6页
对跨领域情感分类任务中因标签样本不足以及不同领域中特征分布差异大导致分类准确率低的问题进行研究,提出一种改进特征选择的跨领域情感分类模型(IPFS)。利用词形还原解决文本中构建词袋模型中的特征冗余的问题,通过卡方检验算法选择... 对跨领域情感分类任务中因标签样本不足以及不同领域中特征分布差异大导致分类准确率低的问题进行研究,提出一种改进特征选择的跨领域情感分类模型(IPFS)。利用词形还原解决文本中构建词袋模型中的特征冗余的问题,通过卡方检验算法选择领域间具有相同表征的枢轴特征作为领域间共享的桥梁,结合神经网络模型,完成跨领域情感分类任务。实验结果表明,IPFS模型与现有的相关模型相比取得了更好的分类效果。 展开更多
关键词 领域情感分析 枢轴特征 卡方检验 词形还原 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部