期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型 被引量:8
1
作者 韦小龙 王方田 +2 位作者 何东升 刘超 徐大连 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期238-248,共11页
煤矸识别技术是矿井智能化建设的关键技术之一,针对工作面低照度高粉尘环境造成的煤矸识别模型精度不高以及小目标煤矸难以识别的问题,提出一种基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型。采用跨阶段部分网络(Cross Stage Parti... 煤矸识别技术是矿井智能化建设的关键技术之一,针对工作面低照度高粉尘环境造成的煤矸识别模型精度不高以及小目标煤矸难以识别的问题,提出一种基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型。采用跨阶段部分网络(Cross Stage Partial Network,CSPNet)改进YOLOv7模型的主干特征提取网络,优化梯度信息减少网络参数,同时采用递归特征金字塔(Recursive Feature Pyr-amid,RFP)和可切换卷积(Switchable Auto Convolution,SAC)替换颈部特征提取网络中简单的上下采样和普通卷积模块,并采用3次迁移训练进行不同宽度和深度的特征学习,增强网络的泛化能力。试验结果表明,CSPNet-YOLOv7模型的平均精度均值为97.53%,准确率为92.24%,召回率为97.91%,F1得分为0.95,模型的参数量为30.85×10^(6),浮点运算次数为42.15×10^(9),每秒传输帧数为24.37 f/s,与YOLOv7模型相比,平均精度均值提高了7.46%,参数量和浮点运算次数分别降低了17.23%和60.41%,相较于FasterRCNN-Resnet50、YOLOv3、YOLOv4、MobileNet V2-YOLOv4、YOLOv4-VGG、YOLOv5s模型、CSPNet-YOLOv7模型对煤矸识别的平均精度均值最高,同时参数量和浮点运算次数较小,在识别精度和速度之间有着较好的平衡。最后,通过井下现场试验验证了CSPNet-YOLOv7模型,为煤矸精准识别提供了有效技术手段。 展开更多
关键词 煤矸识别 YOLOv7 跨阶段部分网络 递归特征金字塔 可切换自动卷积 迁移学习
在线阅读 下载PDF
基于RDN-YOLO的自然环境下水稻病害识别模型研究 被引量:7
2
作者 廖娟 刘凯旋 +3 位作者 杨玉青 严从宽 张爱芳 朱德泉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期233-242,共10页
针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO)。以YOLO v5为基本框架,在主... 针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO)。以YOLO v5为基本框架,在主干网络的特征提取阶段嵌入跨阶段部分网络融合模块(C2f),增强模型对病害特征的感知能力,并引入空间深度转换卷积(SPDConv),扩展模型的感受野,进一步提升模型对小病斑特征提取能力;在颈部网络嵌入SPDConv结构,并利用轻量级卷积GsConv替换部分标准卷积,提高颈部网络对病害部位的定位和类别信息预测的准确性及推理速度;以穗瘟病、叶瘟病、胡麻斑病、稻曲病和白枯病5种常见水稻病害为研究对象,在自然环境下采集水稻病害图像,制作水稻病害数据集,进行模型训练与测试。实验结果表明,本文模型病害检测精确率高达94.2%,平均精度均值达93.5%,模型参数量为8.1 MB;与YOLO v5、Faster R-CNN、YOLO v7、YOLO v8模型相比,模型参数量略大于YOLO v5,但平均精度均值最高约高12.2个百分点,在一定程度上减轻模型复杂度的同时获得良好的水稻病害识别效果。 展开更多
关键词 水稻病害识别 YOLO v5 跨阶段部分网络融合模块 空间深度转换卷积 轻量化
在线阅读 下载PDF
基于多尺度特征融合的红外单目测距算法 被引量:11
3
作者 刘斌 李港庆 +2 位作者 安澄全 王水根 王建生 《计算机应用》 CSCD 北大核心 2022年第3期804-809,共6页
由于MonoDepth2的提出,无监督单目测距在可见光领域取得了重大发展;然而在某些场景例如夜间以及一些低能见度的环境,可见光并不适用,而红外热成像可以在夜间和低能见度条件下获得清晰的目标图像,因此对于红外图像的深度估计显得尤为必... 由于MonoDepth2的提出,无监督单目测距在可见光领域取得了重大发展;然而在某些场景例如夜间以及一些低能见度的环境,可见光并不适用,而红外热成像可以在夜间和低能见度条件下获得清晰的目标图像,因此对于红外图像的深度估计显得尤为必要。由于可见光和红外图像的特性不同,直接将现有可见光单目深度估计算法迁移到红外图像是不合理的。针对该问题,对MonoDepth2算法进行改进,提出了基于多尺度特征融合的红外单目测距算法。针对红外图像低纹理的特性设计了一项新的损失函数边缘损失函数,旨在降低图像重投影时的像素误匹配。不同于以往的无监督单目测距单纯地将四个尺度的深度图统一上采样到原图像分辨率计算投影误差而忽略了尺度之间的关联性以及不同尺度之间的贡献差异,将加权的双向特征金字塔网络(BiFPN)应用于多尺度深度图的特征融合,解决了深度图边缘模糊问题。另外用跨阶段部分网络(CSPNet)替换残差网络(ResNet)结构,以降低网络复杂度并提高运算速度。实验结果表明,边缘损失更适合红外图像测距,使得深度图质量更高;在加入BiFPN结构之后,深度图像的边缘更加清晰;将ResNet替换为CSPNet之后,推理速度提高了大约20个百分点。该算法能够准确估计出红外图像的深度,解决夜间低光照场景以及一些低能见度场景下的深度估计难题;该算法的应用也可以在一定程度上降低汽车辅助驾驶的成本。 展开更多
关键词 无监督 单目测距 红外图像 双向特征金字塔网络 跨阶段部分网络
在线阅读 下载PDF
融合优化特征提取结构的目标检测算法 被引量:1
4
作者 向南 潘传忠 虞高翔 《计算机应用》 CSCD 北大核心 2022年第11期3558-3563,共6页
针对DETR对小目标的检测精度低的问题,基于DETR提出一种优化特征提取结构的目标检测算法——CF⁃DETR。首先通过结合了优化跨阶段部分(CSP)网络的CSP⁃Darknet53对原始图进行特征提取并输出4种尺度的特征图;其次利用特征金字塔网络(FPN)对... 针对DETR对小目标的检测精度低的问题,基于DETR提出一种优化特征提取结构的目标检测算法——CF⁃DETR。首先通过结合了优化跨阶段部分(CSP)网络的CSP⁃Darknet53对原始图进行特征提取并输出4种尺度的特征图;其次利用特征金字塔网络(FPN)对4种尺度特征图进行下采样和上采样后进行拼接融合,并输出52×52尺寸的特征图;最后将该特征图与位置编码信息结合输入Transformer后得到特征序列,输入到作为预测头的前向反馈网络后输出预测目标的类别与位置信息。在COCO2017数据集上,与DETR相比,CF⁃DETR的模型的超参数量减少了2×10^(6),在小目标上的平均检测精度提高2.1个百分点,在中、大尺寸目标上的平均检测精度提高了2.3个百分点。实验结果表明,优化特征提取结构能够在降低模型超参数量的同时有效提高DETR的检测精度。 展开更多
关键词 目标检测 小目标 DETR算法 特征提取 跨阶段部分网络 特征金字塔网络 TRANSFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部