期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种融合上下文信息及自适应感受野的多尺度目标检测算法
1
作者 张婷 兰时勇 《计算机应用与软件》 北大核心 2024年第10期314-318,共5页
目标检测在实际应用各类复杂场景中面临着诸多的挑战,如目标遮挡、光照变化、目标尺度变化等。为了提高多尺度目标检测的性能,提出一种改进的特征金字塔(FPN)的目标检测算法。以特征金字塔网络框架为基础引入上下文信息融合模块,充分利... 目标检测在实际应用各类复杂场景中面临着诸多的挑战,如目标遮挡、光照变化、目标尺度变化等。为了提高多尺度目标检测的性能,提出一种改进的特征金字塔(FPN)的目标检测算法。以特征金字塔网络框架为基础引入上下文信息融合模块,充分利用目标对象与其周围环境的关联属性,增强宽动态尺度范围的目标对象的特征表征,提高不同尺度目标的辨识能力。此外,构建一个跨通道注意机制,自适应调整不同尺度目标特征的通道灵敏度,学习到适应目标尺度的感受野范围。该算法在Pascal VOC数据集训练验证,其平均精确率(mAP)比基准方法提高了3%。 展开更多
关键词 目标检测 上下文信息融合 跨通道注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部