服装已经成为网络购物的重要商品之一,实现精准的符合用户个性化审美的服装推荐系统,已经成为热门研究内容。针对提取用户的细粒度兴趣特征不全面,导致推荐系统的准确性低问题,提出融合长短期偏好的服装推荐算法;针对数据稀疏以及数据...服装已经成为网络购物的重要商品之一,实现精准的符合用户个性化审美的服装推荐系统,已经成为热门研究内容。针对提取用户的细粒度兴趣特征不全面,导致推荐系统的准确性低问题,提出融合长短期偏好的服装推荐算法;针对数据稀疏以及数据单一性,导致推荐结果个性化、多样性低的问题,利用跨模态数据和注意力机制使模型学习出更为精准的差异性用户特征。在真实数据集Clothing Shoes and Jewelry上,将所设计的模型(PCR)与经典的循环神经网络RNN、基于矩阵分解MF-BPR模型以及改进的矩阵分解TARMF模型进行性能比对,PCR模型在关键性能评价指标NDCG、Precision@K和Recall@K均有提升。实验结果表明该模型在服装推荐系统中是可行与有效的。展开更多
文摘服装已经成为网络购物的重要商品之一,实现精准的符合用户个性化审美的服装推荐系统,已经成为热门研究内容。针对提取用户的细粒度兴趣特征不全面,导致推荐系统的准确性低问题,提出融合长短期偏好的服装推荐算法;针对数据稀疏以及数据单一性,导致推荐结果个性化、多样性低的问题,利用跨模态数据和注意力机制使模型学习出更为精准的差异性用户特征。在真实数据集Clothing Shoes and Jewelry上,将所设计的模型(PCR)与经典的循环神经网络RNN、基于矩阵分解MF-BPR模型以及改进的矩阵分解TARMF模型进行性能比对,PCR模型在关键性能评价指标NDCG、Precision@K和Recall@K均有提升。实验结果表明该模型在服装推荐系统中是可行与有效的。