期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
高中生物学跨模块专题式二轮复习的教学策略
1
作者 李星婷 《生物学教学》 北大核心 2018年第10期22-23,共2页
本文介绍了跨模块专题式二轮复习的教学策略,阐述了该教学策略的优点,旨在提高高三生物学复习课的教学效率。
关键词 高中生物学 跨模块专题 二轮复习 教学策略
在线阅读 下载PDF
基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络 被引量:1
2
作者 陈力 丁世飞 于文家 《计算机应用》 CSCD 北大核心 2020年第12期3451-3457,共7页
针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简... 针对传统卷积神经网络参数量过多、计算复杂度高的问题,提出了基于跨通道交叉融合和跨模块连接的轻量级卷积神经网络架构C-Net。首先,提出了跨通道交叉融合的方法,它在一定程度上克服了分组卷积中各分组之间存在缺乏信息流动的问题,简单高效地实现了不同分组之间的信息通信;其次,提出了一种跨模块连接的方法,它克服了传统轻量级架构中各基本构建块之间彼此独立的缺点,实现了同一阶段内具有相同分辨率特征映射的不同模块之间的信息融合,从而增强了特征提取能力;最后,基于提出的两种方法设计了一种新型的轻量级卷积神经网络架构C-Net。C-Net在Food101数据集上的准确率为69.41%,在Caltech256数据集上的准确率为63.93%。实验结果表明,与目前先进的轻量级卷积神经网络模型相比,C-Net降低了存储开销和计算复杂度。在Cifar10数据集上的消融实验验证了所提出的两种方法的有效性。 展开更多
关键词 卷积神经网络 轻量级 分组卷积 通道交叉融合 快捷连接 跨模块连接
在线阅读 下载PDF
基于3D多模态卷积网络与跨模态特征集成的阿尔茨海默症分类
3
作者 朱厚元 郑乐乐 +5 位作者 商浩 臧雪峰 吴少琪 周广超 孙建德 乔建苹 《数据采集与处理》 北大核心 2025年第4期912-921,共10页
多模态神经影像技术为阿尔茨海默症(Alzheimer’s disease,AD)的早期精准诊断提供了重要的技术支撑。然而,由于不同模态神经影像数据在成像原理和特征表达上存在固有异质性,模态间的信息融合面临挑战。针对这一问题,提出了一种基于3D Re... 多模态神经影像技术为阿尔茨海默症(Alzheimer’s disease,AD)的早期精准诊断提供了重要的技术支撑。然而,由于不同模态神经影像数据在成像原理和特征表达上存在固有异质性,模态间的信息融合面临挑战。针对这一问题,提出了一种基于3D ResNet架构的多模态融合网络(Multi-modal fusion network,MFN),用于AD的早期辅助诊断。该方法首先采用3D ResNet网络分别提取T1加权和T2加权磁共振图像的特征表示,然后设计了一种创新的跨模态特征集成模块(Cross-modal feature integration module,CFIM)。相较于多模态数据直接串联,导致维度增长无法自适应调整模态权重的问题,CFIM采用分阶段融合策略,包括全局信息融合模块、局部特征学习模块和关键因素模块。最后,融合后的多模态特征通过全连接神经网络进行分类决策。相比早期拼接的固定权重叠加和后期融合的浅层聚合,该策略能更精准地筛选出疾病诊断相关的特征。通过在阿尔茨海默症神经影像倡议(ADNI)数据库上的实验结果表明,与现有方法相比,本文方法在AD分类任务中具有较高的准确率和显著优势,且消融实验进一步验证了各模块的有效性,为多模态神经影像分析提供了新的技术思路。 展开更多
关键词 阿尔茨海默症 3D多模态融合网络 核磁共振图像 模态特征集成模块 深度学习
在线阅读 下载PDF
新跨接双极三电平子模块拓扑及其控制策略 被引量:3
4
作者 张建坡 闫语 田新成 《电力自动化设备》 EI CSCD 北大核心 2022年第4期114-120,共7页
基于半桥型子模块拓扑的模块化多电平换流器不具备直流短路故障电流阻断能力,影响了低成本架空线的应用。为抑制直流故障时的短路电流,研究了一种新跨接单极三电平子模块拓扑,解决了混合拓扑中电容不均衡充电问题。然后为应对子模块闭... 基于半桥型子模块拓扑的模块化多电平换流器不具备直流短路故障电流阻断能力,影响了低成本架空线的应用。为抑制直流故障时的短路电流,研究了一种新跨接单极三电平子模块拓扑,解决了混合拓扑中电容不均衡充电问题。然后为应对子模块闭锁对换流站和电网可能产生的不利影响,设计了一种新跨接正、负极三电平子模块拓扑,并分析了其过调制运行、降直流电压运行和桥臂电流方向变化工况时所提拓扑的正、负电平输出要求,进一步减少了子模块中功率器件数量并研究了其控制策略。最后在PSCAD/EMTDC中搭建仿真模型,对所提新跨接双极三电平子模块拓扑过调制运行、自均压特性及闭锁抑制特性进行了仿真验证。仿真结果表明,所设计的拓扑及控制策略能够有效抑制直流故障时的短路电流。 展开更多
关键词 模块化多电平换流器 直流故障 短路电流 接双极三电平子模块 自均压特性
在线阅读 下载PDF
跨级融合门控自适应网络用于视网膜血管分割 被引量:1
5
作者 梁礼明 余洁 +2 位作者 陈鑫 雷坤 周珑颂 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1097-1109,共13页
针对现有多数算法对浅层特征提取不足,导致分割结果中血管边界模糊、毛细血管欠分割且包含噪声等问题,提出一种跨级融合门控自适应网络。该网络中的密集门控通道变换模块,通过促进通道之间的竞争或协同关系充分提取浅层特征信息,避免浅... 针对现有多数算法对浅层特征提取不足,导致分割结果中血管边界模糊、毛细血管欠分割且包含噪声等问题,提出一种跨级融合门控自适应网络。该网络中的密集门控通道变换模块,通过促进通道之间的竞争或协同关系充分提取浅层特征信息,避免浅层粗粒度特征信息丢失;通过跨层次融合模块捕获各层跨维度交互信息,有效聚合多尺度上下文特征;采用双自适应特征融合方法有效引导相邻层次特征融合,抑制噪声。在公共数据集DRIVE、CHASEDB1和STARE上进行验证,结果表明:所提网络准确率分别为0.9652、0.9668和0.9695,F_(1)值分别为0.8544、0.8152和0.8412,在多个指标上均处于较高水平,优于现有先进算法。 展开更多
关键词 视网膜血管分割 密集门控通道变换 层次融合模块 双自适应特征融合 三重注意力模块
在线阅读 下载PDF
面向鱼眼相机标定和畸变处理的深度神经网络
6
作者 李晗 葛动元 姚锡凡 《科学技术与工程》 北大核心 2025年第17期7260-7267,共8页
针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变... 针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变校正的精度;为了进一步提高模型精度和泛化性,在编码部分引入坐标注意力模块,增强对图像位置信息的关注度;最后为了增强图像的细节特征,在跨越连接部分设计了跨尺度融合模块。针对数据集稀缺的问题,还生成了一个新的大规模数据集,标有相应的畸变参数和畸变校正后的图像。实验结果表明:与其他鱼眼相机标定方法相比,重投影误差为0.312 pixel,标定的精度较高;与图像畸变处理方法相比,峰值信噪比(peak signal to noise ratio,PSNR)为38.055 dB,结构相似度(structural similarity,SSIM)为0.874,图像畸变校正的质量较好。 展开更多
关键词 鱼眼相机标定 畸变处理 坐标注意力模块 尺度融合模块
在线阅读 下载PDF
基于三维与二维特征融合的无参考点云质量评价
7
作者 刘太伟 郁梅 屠仁伟 《光电工程》 北大核心 2025年第4期121-130,共10页
随着点云数据在虚拟现实、计算机视觉、机器人等领域中的广泛应用,点云获取与处理中的失真评价正成为一个重要的研究问题。考虑到点云三维信息对几何失真敏感、点云二维投影图包含丰富的纹理和语义信息,提出一种基于三维与二维特征融合... 随着点云数据在虚拟现实、计算机视觉、机器人等领域中的广泛应用,点云获取与处理中的失真评价正成为一个重要的研究问题。考虑到点云三维信息对几何失真敏感、点云二维投影图包含丰富的纹理和语义信息,提出一种基于三维与二维特征融合的无参考点云质量评价方法,以有效结合点云的三维与二维特征信息,提高点云质量评价的准确性。对于三维特征提取,先对点云进行最远点采样,以选取的点为中心生成互不重叠的点云子模型,尽可能地覆盖整个点云模型,利用多尺度三维特征提取网络提取体素和点的特征。对于二维特征提取,先对点云进行正交6面投影,再通过多尺度二维特征提取网络提取纹理和语义信息。最后,考虑到人类视觉系统处理不同类型信息时会存在分割处理和交织融合的过程,设计一个对称跨模态注意模块融合三维和二维特征。在5个公开点云质量评价数据库上的实验结果显示,所提方法的皮尔逊线性相关系数(Pearson’s linear correlation coefficient,PLCC)分别达到0.9203、0.9463、0.9125、0.916和0.921,表明与现有的代表性点云质量评价方法相比,所提方法更优。 展开更多
关键词 点云质量评价 三维特征 二维特征 对称模态注意模块
在线阅读 下载PDF
煤矿井下暗光环境人员行为检测研究 被引量:1
8
作者 董芳凯 赵美卿 黄伟龙 《工矿自动化》 北大核心 2025年第1期21-30,144,共11页
煤矿井下环境复杂,对部分作业现场人员行为进行检测时易出现漏检与误检问题。针对该问题,提出了一种煤矿井下暗光环境人员行为检测方法,包括暗光环境图像增强和行为检测2个部分。暗光环境图像增强基于自校准光照学习(SCI)进行改进,由图... 煤矿井下环境复杂,对部分作业现场人员行为进行检测时易出现漏检与误检问题。针对该问题,提出了一种煤矿井下暗光环境人员行为检测方法,包括暗光环境图像增强和行为检测2个部分。暗光环境图像增强基于自校准光照学习(SCI)进行改进,由图像增强网络和校准网络构成。人员行为检测通过引入Dynamic Head检测、跨尺度融合模块和Focal-EIoU损失函数来改进YOLOv8n模型。SCI+网络增强后的图像作为人员行为检测模型检测的对象,完成井下暗光环境人员行为的检测任务。实验结果表明:(1)井下暗光环境人员行为检测方法的m AP@0.5为87.6%,较YOLOv8n提升了2.5%,较SSD,Faster RCNN,YOLOv5s,RT-DETR-L分别提升了15.7%,11.5%,0.9%,4.3%。(2)井下暗光环境人员行为检测方法的参数量为3.6×106个,计算量为11.6×109,检测速度为95.24帧/s。(3)在公开数据集EXDark上,井下暗光环境人员行为检测方法的mAP@0.5为74.7%,较YOLOv8n提升了1.5%,表明该方法具有较强的泛化能力。 展开更多
关键词 暗光环境 井下人员行为检测 自校准光照学习 图像增强 SCI+网络 Dynamic Head 尺度融合模块 Focal-EIoU损失函数 YOLOv8n
在线阅读 下载PDF
基于自编码器的人群异常行为检测算法
9
作者 王玉 杨晓文 +3 位作者 孙福盛 况立群 韩慧妍 张元 《计算机工程与设计》 北大核心 2025年第3期779-787,共9页
为提高人群异常行为检测算法性能,以STEAL-Net为基础,提出一种融合全局时空特征的自编码器人群异常行为检测算法。在编码器进行特征提取时,将全局跨通道特征提取模块与三维卷积结合,减少全局上下文特征的缺失;将提取到的特征序列输入到... 为提高人群异常行为检测算法性能,以STEAL-Net为基础,提出一种融合全局时空特征的自编码器人群异常行为检测算法。在编码器进行特征提取时,将全局跨通道特征提取模块与三维卷积结合,减少全局上下文特征的缺失;将提取到的特征序列输入到全局时空信息增强模块,进一步对视频帧的全局时空特征进行有效提取;进入解码器对输入帧进行重构,利用重构误差大小对异常行为进行检测。该算法在公开数据集UCSD Ped1、UCSD Ped2和ShanghaiTech上与其它先进方法进行了AUC指标的比较,实验结果表明所提算法的有效性。 展开更多
关键词 人群异常行为检测 自编码器 全局上下文 全局时空特征 重构 全局通道特征提取模块 全局时空信息增强模块
在线阅读 下载PDF
DCD-YOLOv8n:一种高效的钢材表面缺陷检测算法
10
作者 梁礼明 陈康泉 +2 位作者 钟奕 龙鹏威 冯耀 《计算机工程与应用》 北大核心 2025年第7期117-127,共11页
针对现有钢材表面缺陷检测算法资源消耗较大、检测精度和效率较低等问题,提出一种基于YOLOv8n的高效钢材缺陷检测算法(DCD-YOLOv8n)。该方法一是设计轻量化的多分支特征聚合网络,有效精简模型体积并提升检测速度;二是利用跨维度聚合模块... 针对现有钢材表面缺陷检测算法资源消耗较大、检测精度和效率较低等问题,提出一种基于YOLOv8n的高效钢材缺陷检测算法(DCD-YOLOv8n)。该方法一是设计轻量化的多分支特征聚合网络,有效精简模型体积并提升检测速度;二是利用跨维度聚合模块,通过自适应机制建模多维度特征,以提升检测精度;三是采用可变形多头注意力机制,动态调整注意力的形状和范围,有效应对形态多样和结构复杂的缺陷特征,从而提升检测性能。在Severstal和NEU-DET钢材缺陷数据集上进行实验验证,相较于YOLOv8n算法,DCD-YOLOv8n算法的mAP分别提高2.4个百分点和1.9个百分点;参数量和复杂度分别降低0.5×10^(6)和1.9×10^(9);FPS分别提升22帧和7帧。实验结果表明,该算法在平衡计算开销、检测精度和效率方面表现优异,具有一定的实际部署应用价值。 展开更多
关键词 缺陷检测 YOLOv8n 多分支特征聚合网络 维度聚合模块 可变形多头注意力机制
在线阅读 下载PDF
融合渐进式去雨网络的军用车辆检测算法
11
作者 苏胜君 仝秋红 +3 位作者 柴国庆 苏海东 王凯 胡待方 《现代电子技术》 北大核心 2025年第5期127-134,共8页
针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹... 针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹信息的同时缓解卷积过程中的细节特征丢失问题;其次引入SPPFCSPC模块改进了单阶段检测器,保证检测器感受野的同时提高了效率,增强了检测模型的表达能力。自建数据集中的实验结果表明,雨天场景下,相较于经典检测算法YOLOv7,所提算法的mAP@0.5、mAP@0.5:0.95分别提升了4.4%、2.8%,算法检测速度达到21.05 f/s,基本满足检测实时性要求,证明了所提算法的有效性与实用性。 展开更多
关键词 图像去雨 编码器-解码器架构 轻量级高效雨纹特征提取模块 子网雨纹特征融合模块 SPPFCSPC模块 军用车辆检测
在线阅读 下载PDF
改进YOLOv4的遥感图像目标检测算法 被引量:5
12
作者 闵锋 况永刚 +2 位作者 毛一新 彭伟明 郝琳琳 《计算机工程与设计》 北大核心 2024年第2期396-404,共9页
为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交... 为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交互;使用跨阶段分层卷积模块重构特征融合阶段对深层特征图的处理方式,防止网络退化和梯度消失;采用Mish激活函数,增强融合网络对非线性特征的提取能力。在RSOD、DIOR数据集上的实验结果表明,改进YOLOv4算法的测试mAP相比原YOLOv4算法分别高出4.5%、7.3%,其检测速度分别达到48 fps、45 fps,在保证实时性的同时检测精度有较大提升。 展开更多
关键词 遥感图像 目标检测 阶段残差结构 特征交互 阶段分层卷积模块 激活函数 非线性特征
在线阅读 下载PDF
基于深度跨域中介模块的英文翻译
13
作者 黄笑菡 程时伟 张纪林 《计算机工程与设计》 2025年第9期2502-2508,共7页
为促进文本域与视觉域之间的语义关联,提高英文翻译的准确性,提出一种基于深度跨域中介模块(deep crossdomain intermediary module,DCIM)的英文翻译方法,区别于传统的联合空间学习方法,DCIM作为中介模块指导图像中感兴趣区域与源词之... 为促进文本域与视觉域之间的语义关联,提高英文翻译的准确性,提出一种基于深度跨域中介模块(deep crossdomain intermediary module,DCIM)的英文翻译方法,区别于传统的联合空间学习方法,DCIM作为中介模块指导图像中感兴趣区域与源词之间的交互。通过强化文本编码器和视觉编码器提取的表征之间的语义关联,使视觉表征在语义上得到增强并演化为跨域表征。通过双重注意力解码器,利用两种独立的注意力机制分别处理文本和跨域表征的上下文,预测目标词汇。实验结果表明,集成DCIM的模型在两种英文翻译任务中基于Meteor和Ribes指标取得了最佳翻译准确性和鲁棒性。 展开更多
关键词 深度域中介模块 英文翻译 双重注意力解码器 文本域 视觉域 神经网络 自然语言处理
在线阅读 下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法 被引量:4
14
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable DETR 目标检测 尺度特征融合模块 object query挤压-激励 在线难样本挖掘
在线阅读 下载PDF
基于SCSC-Swin Transformer的电力系统暂态稳定预测方法 被引量:2
15
作者 刘文胜 荣娜 +2 位作者 李宏伟 周洪才 张异浩 《电子测量技术》 北大核心 2024年第22期120-128,共9页
现代电力系统在遭受扰动后,失稳模式呈现多样化,迫切需要准确识别不同的失稳模式,以采取相应的控制措施避免造成较大损失,因此本文提出一种基于改进Swin Transformer的电力系统暂态稳定评估方法。首先,通过时域仿真采集电力系统受扰后... 现代电力系统在遭受扰动后,失稳模式呈现多样化,迫切需要准确识别不同的失稳模式,以采取相应的控制措施避免造成较大损失,因此本文提出一种基于改进Swin Transformer的电力系统暂态稳定评估方法。首先,通过时域仿真采集电力系统受扰后的电压幅值及相角特征构建起特征矩阵;然后,基于Swin Transformer,本文提出一种空间跨尺度卷积注意力模块,用来替代原来的多头自注意力模块,该模块通过一系列不同卷积核大小的卷积层,能够充分提取到不同维度的有效特征,进而实现更为准确的预测结果。最后,通过在修改后的New England 10机39节点系统及IEEE 50机145节点系统中进行仿真实验,预测准确率分别达到99.05%和99.00%,多摆失稳误判率为0.35%和0.27%,这表明所提方法不仅能够对不同的失稳模式进行准确的预测,同时在噪声及PMU特征缺失情况下仍表现出优越的鲁棒性。 展开更多
关键词 暂态稳定预测 空间尺度卷积模块 失稳模式 Swin Transformer 数据驱动
在线阅读 下载PDF
基于RDN-YOLO的自然环境下水稻病害识别模型研究 被引量:7
16
作者 廖娟 刘凯旋 +3 位作者 杨玉青 严从宽 张爱芳 朱德泉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期233-242,共10页
针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO)。以YOLO v5为基本框架,在主... 针对自然环境下水稻病害识别准确度易受复杂背景干扰、病害类间差异小难以准确识别等问题,以提高水稻病害识别精度并进行模型的有效轻量化为前提,提出了一种水稻病害识别网络模型(RiceDiseaseNet,RDN-YOLO)。以YOLO v5为基本框架,在主干网络的特征提取阶段嵌入跨阶段部分网络融合模块(C2f),增强模型对病害特征的感知能力,并引入空间深度转换卷积(SPDConv),扩展模型的感受野,进一步提升模型对小病斑特征提取能力;在颈部网络嵌入SPDConv结构,并利用轻量级卷积GsConv替换部分标准卷积,提高颈部网络对病害部位的定位和类别信息预测的准确性及推理速度;以穗瘟病、叶瘟病、胡麻斑病、稻曲病和白枯病5种常见水稻病害为研究对象,在自然环境下采集水稻病害图像,制作水稻病害数据集,进行模型训练与测试。实验结果表明,本文模型病害检测精确率高达94.2%,平均精度均值达93.5%,模型参数量为8.1 MB;与YOLO v5、Faster R-CNN、YOLO v7、YOLO v8模型相比,模型参数量略大于YOLO v5,但平均精度均值最高约高12.2个百分点,在一定程度上减轻模型复杂度的同时获得良好的水稻病害识别效果。 展开更多
关键词 水稻病害识别 YOLO v5 阶段部分网络融合模块 空间深度转换卷积 轻量化
在线阅读 下载PDF
基于双向嵌套级联残差的交通标志检测方法
17
作者 江金懋 钟国韵 《现代电子技术》 北大核心 2024年第5期176-181,共6页
交通标志检测是自动驾驶领域的一个重要课题,其对于检测系统的实时性和精度都有非常高的要求。目标检测领域中的YOLOv3算法是业界公认在精度和速度上都处于前列的一种算法。文中以YOLOv3检测算法作为基础网络,提出一种双向嵌套级联残差... 交通标志检测是自动驾驶领域的一个重要课题,其对于检测系统的实时性和精度都有非常高的要求。目标检测领域中的YOLOv3算法是业界公认在精度和速度上都处于前列的一种算法。文中以YOLOv3检测算法作为基础网络,提出一种双向嵌套级联残差单元(bid⁃NCR),替换掉原网络中顺序堆叠的标准残差块。双向嵌套级联残差单元的两条残差边采用相同的结构,都是一次卷积操作加上一次级联残差处理,两条边上级联的标准残差块的数量可以调节,从而形成不同的深度差。然后将两条边的结果逐像素相加,最后再做一次卷积操作。相较于标准残差块,双向嵌套级联残差单元拥有更强的特征提取能力和特征融合能力。文中还提出跨区域压缩模块(CRC),它是对2倍率下采样卷积操作的替代,旨在融合跨区域的通道数据,进一步加强主干网络输入特征图所包含的信息。实验结果表明:提出的模型在CCTSDB数据集上mAP(0.5)、mAP(0.5∶0.95)分别达到96.86%、68.66%,FPS达到66.09帧。相比于YOLOv3算法,3个指标分别提升1.23%、10.35%、127.90%。 展开更多
关键词 交通标志检测 双向嵌套级联残差单元 区域压缩模块 YOLOv3 长沙理工大学中国交通标志检测数据集 特征提取 特征融合
在线阅读 下载PDF
学科大概念多重层级下的主题大概念教学路径——以人教版(2019版)选择性必修2《物质结构与性质》为例 被引量:4
18
作者 王换荣 肖中荣 《化学教学》 CAS 北大核心 2023年第9期25-28,共4页
构建学科大概念统领的课程内容体系,是义务教育阶段和普通高中阶段课程改革的重大创新。基于学科大概念的多重层级及其与特定主题内容的融合,提出主题大概念教学,是解决课程内容组织的结构化和建立学科基本观念的一般路径。化学学科大... 构建学科大概念统领的课程内容体系,是义务教育阶段和普通高中阶段课程改革的重大创新。基于学科大概念的多重层级及其与特定主题内容的融合,提出主题大概念教学,是解决课程内容组织的结构化和建立学科基本观念的一般路径。化学学科大概念让学生能够在更高的认知层面理解具体知识背后的更为本质的观念,促进化学学科核心素养的落实,为学生的终身发展提供支持。 展开更多
关键词 学科大概念 主题大概念 学科基本观念 概念层级 跨模块
在线阅读 下载PDF
面向大规模多类别的病虫害识别模型 被引量:15
19
作者 温长吉 王启锐 +4 位作者 陈洪锐 吴建双 倪军 杨策 苏恒强 《农业工程学报》 EI CAS CSCD 北大核心 2022年第8期169-177,共9页
早期病虫害精准识别是预警和防控的关键,但是病虫害种类繁多数量巨大,外部形态存在类间相似度较高而类内差异性较大等性状特征,导致病虫害识别仍然是一项极具挑战的工作。为实现病虫害识别分类任务中差异化特征的提取和表示,该研究提出... 早期病虫害精准识别是预警和防控的关键,但是病虫害种类繁多数量巨大,外部形态存在类间相似度较高而类内差异性较大等性状特征,导致病虫害识别仍然是一项极具挑战的工作。为实现病虫害识别分类任务中差异化特征的提取和表示,该研究提出一种大规模多类别精细病虫害识别网络模型(a large-scale multi-category fine-grained pest and disease network,PD-Net)。首先通过在基准网络模型中引入卷积块注意力模型,通过混合跨特征通道域和特征空间域实现模型在通道和空间两个维度上对关键特征提取和表示,用以增强网络对差异化特征的提取和表示能力。其次引入跨层非局部模块,提升模型在多个特征提取层之间对于多尺度特征的融合。在61类病害数据集和102类虫害数据集上的试验结果表明,对比AlexNet、VGG16、GoogleNet、Inception-v3、DenseNet121和ResNet50模型,该研究提出的面向大规模多类别病虫害识别模型,Top1识别准确率在病害和虫害集上分别达到88.617%和74.668%,精确率分别达到了0.875和0.745,召回率分别达到0.874和0.738,F1值达到0.874和0.732,试验结果对比其他模型均有一定幅度的提升,验证了PD-Net模型在大规模多类别病虫害识别上的有效性。 展开更多
关键词 模型 深度学习 病虫害 精细分类 卷积块注意力模块 层非局部模块
在线阅读 下载PDF
一种面向室内场景的语义分割网络 被引量:1
20
作者 顾嘉城 龙英文 +1 位作者 吉明明 郑旸 《激光与红外》 CAS CSCD 北大核心 2023年第4期615-625,共11页
现有RGB-D语义分割方法难以充分地融合深度信息来实现对复杂场景的语义分割,为了能更精确地在室内场景RGB图中进行识别内部物体,提出一种基于通道注意力机制的非对称三分支结构型卷积网络语义分割模型。该方法能选择性地从RGB图和深度... 现有RGB-D语义分割方法难以充分地融合深度信息来实现对复杂场景的语义分割,为了能更精确地在室内场景RGB图中进行识别内部物体,提出一种基于通道注意力机制的非对称三分支结构型卷积网络语义分割模型。该方法能选择性地从RGB图和深度图像中收集特征。先构建了一个具有三个并行分支的体系结构,并添加了三个互补的注意模块。且运用了双向跨模块特征传播策略,不仅可以保留原始RGB图像和深度图像的特征,还能充分利用融合分支的深度特征。在两个室内场景数据集(NYUDv2数据集和SUN-RGBD数据集)进行了对照实验和消融研究。结果表明,所提出的模型与目前最好的表现方法注意力互补网络(ACNet)对比下,像素精度、平均像素精度、平均交并比分别提高了0.9%、1.3%、1.7%,在镜子、书本、箱子等小物体的语义分割交并比指标提高了7.2%、9.6%、11.2%。验证了提出的模型在处理室内场景具更强的适用性。 展开更多
关键词 RGB-D语义分割 双向跨模块特征传播策略 通道注意力机制 室内场景
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部