期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多重卷积神经网络跨数据集图像分类 被引量:5
1
作者 刘鑫童 刘立波 张鹏 《计算机工程与设计》 北大核心 2018年第11期3549-3554,共6页
为解决不同数据集共同类图像特征学习能力弱的问题,采用深度学习算法模型,提出一种基于多重卷积神经网络的跨数据集图像分类方法。以中值滤波预处理后的图像作为网络输入,在两个池化层之间采用两组连续卷积层,卷积特征提取和池化后,采... 为解决不同数据集共同类图像特征学习能力弱的问题,采用深度学习算法模型,提出一种基于多重卷积神经网络的跨数据集图像分类方法。以中值滤波预处理后的图像作为网络输入,在两个池化层之间采用两组连续卷积层,卷积特征提取和池化后,采用L2范数正则化的Softmax损失函数作为模型分类器,完成多重卷积神经网络分类的训练和测试。实验结果表明,相比于传统JDA方法、TCA方法和KPCA方法,该方法在经典数据集Caltech256、Amazon、Webcam和Dslr上具有更好的特征提取能力和更高的平均准确率。 展开更多
关键词 跨数据集分类 卷积神经网络 多重卷积 特征学习 L2正则化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部