小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on...小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on proposal enhancement,PDMDet)。首先,采用单阶段检测器取代两阶段检测器的提案生成网络,通过生成高质量提案以减少背景冗余。其次,在相同维度使用自注意力,不同维度使用交叉注意力,通过对相同维度特征增强,不同维度特征交错融合提升检测器对不同尺寸目标的识别能力。最后,鉴于分类和定向边界框回归任务对特征的敏感性不同,本文提出解耦特征细化处理两个不同任务。通过实验,PDMDet在DOTA-v1.0、DOTA-v1.5和HRSC2016这3个数据集上分别取得单尺度78.37%、72.35%、98.60%的平均精度均值,检测准确率高于其他算法,在复杂的旋转目标检测场景具有一定的竞争力。展开更多
针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变...针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变校正的精度;为了进一步提高模型精度和泛化性,在编码部分引入坐标注意力模块,增强对图像位置信息的关注度;最后为了增强图像的细节特征,在跨越连接部分设计了跨尺度融合模块。针对数据集稀缺的问题,还生成了一个新的大规模数据集,标有相应的畸变参数和畸变校正后的图像。实验结果表明:与其他鱼眼相机标定方法相比,重投影误差为0.312 pixel,标定的精度较高;与图像畸变处理方法相比,峰值信噪比(peak signal to noise ratio,PSNR)为38.055 dB,结构相似度(structural similarity,SSIM)为0.874,图像畸变校正的质量较好。展开更多
文摘小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on proposal enhancement,PDMDet)。首先,采用单阶段检测器取代两阶段检测器的提案生成网络,通过生成高质量提案以减少背景冗余。其次,在相同维度使用自注意力,不同维度使用交叉注意力,通过对相同维度特征增强,不同维度特征交错融合提升检测器对不同尺寸目标的识别能力。最后,鉴于分类和定向边界框回归任务对特征的敏感性不同,本文提出解耦特征细化处理两个不同任务。通过实验,PDMDet在DOTA-v1.0、DOTA-v1.5和HRSC2016这3个数据集上分别取得单尺度78.37%、72.35%、98.60%的平均精度均值,检测准确率高于其他算法,在复杂的旋转目标检测场景具有一定的竞争力。
文摘针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变校正的精度;为了进一步提高模型精度和泛化性,在编码部分引入坐标注意力模块,增强对图像位置信息的关注度;最后为了增强图像的细节特征,在跨越连接部分设计了跨尺度融合模块。针对数据集稀缺的问题,还生成了一个新的大规模数据集,标有相应的畸变参数和畸变校正后的图像。实验结果表明:与其他鱼眼相机标定方法相比,重投影误差为0.312 pixel,标定的精度较高;与图像畸变处理方法相比,峰值信噪比(peak signal to noise ratio,PSNR)为38.055 dB,结构相似度(structural similarity,SSIM)为0.874,图像畸变校正的质量较好。