期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于跨尺度EEG特征融合的疲劳驾驶检测
1
作者 祁振民 张冰涛 宋宇博 《兰州交通大学学报》 CAS 2023年第4期66-72,共7页
疲劳驾驶是交通事故及其所导致死亡的主要原因之一。传统基于生理信号的疲劳驾驶检测方法往往使用单一尺度,使得部分有价值信息丢失。为此,提出了一种基于跨时空尺度脑电(electroencephalogram,EEG)特征融合的疲劳驾驶检测方法。基于可... 疲劳驾驶是交通事故及其所导致死亡的主要原因之一。传统基于生理信号的疲劳驾驶检测方法往往使用单一尺度,使得部分有价值信息丢失。为此,提出了一种基于跨时空尺度脑电(electroencephalogram,EEG)特征融合的疲劳驾驶检测方法。基于可视图理论映射时序EEG信号到空间网络,以实现时空EEG转化;分别提取时域和空域EEG特征,发掘不同时空EEG特征对疲劳驾驶检测的潜力,设计基于特征权重系数的时空EEG特征融合方法,进而实现疲劳驾驶检测。实验结果表明:该方法可以有效地实现疲劳驾驶检测,最高检测准确率能够达到95.15%。 展开更多
关键词 疲劳驾驶检测 脑电 跨尺度特征融合 权重系数
在线阅读 下载PDF
基于多尺度注意力机制的无人机小目标检测算法
2
作者 冯迎宾 郭枭尊 晏佳华 《兵工学报》 北大核心 2025年第1期12-21,共10页
针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster ... 针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster Block_C2f,EF_C2f),替换YOLOv8网络中的C2f模块,提高网络对小目标特征的提取能力;在特征融合网络中增加P1检测层,并设计一种跨尺度特征融合结构(Bi-Path Aggregation Network,BPAN),融合小目标特征信息;增加一个微小目标检测头,使用SIoU Loss作为边界框损失函数,提升小目标检测精度和网络收敛速度。在公开数据集VisDrone2019上进行实验验证。验证结果表明:与YOLOv8s算法相比,新算法在检测精度上提升了6.9%、mAP50提升了9.1%,模型参数量减少了44.6%,检测速度为28帧/s,新算法在小目标检测领域具有一定的实用性。 展开更多
关键词 尺度注意力机制 YOLOv8s算法 特征提取 跨尺度特征融合 小目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部