期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自提示因果推理增强的跨域文本生成
1
作者 刘小明 黄柄涵 +1 位作者 杨关 刘杰 《中文信息学报》 北大核心 2025年第8期170-184,共15页
现有的大型语言模型(Large Language Models,LLMs)文本生成方法在面对缺乏大规模标注数据的特定领域时,缺少可学习的源域数据,这使得LLMs在处理特定术语和专业知识时容易产生虚假相关性问题。为解决这一问题,该文提出了一种基于自提示... 现有的大型语言模型(Large Language Models,LLMs)文本生成方法在面对缺乏大规模标注数据的特定领域时,缺少可学习的源域数据,这使得LLMs在处理特定术语和专业知识时容易产生虚假相关性问题。为解决这一问题,该文提出了一种基于自提示因果推理增强的专家协作框架,通过建立领域知识提取模块,以挖掘LLMs固有的领域背景知识,并通过设计因果关系提取模块来增强LLMs的因果关系发现能力,进一步提高模型对因果关系信息的利用,从而有效减轻了跨域文本生成中的虚假相关性问题;同时通过训练多个解码头实现并行解码,以减少框架带来的额外时间开销。实验结果表明,该框架在问答任务中的LogiQA、CommonsenseQA和MedQA数据集上的Acc值相较于Llama2-70b基准模型分别提高了16.57%、7.94%和16.32%。同时在HotpotQA数据集和其他6个低资源领域数据集上表现优异,证实了自提示因果推理在提高跨域文本生成准确性和减少虚假相关性方面的有效性。 展开更多
关键词 跨域文本生成 因果推理 零样本
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部