Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differ...Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
A filtering algorithm and direction identification method are presented for the positioning system of the mid-speed maglev train. Considering the special structure of the mid-speed maglev train, the ground position es...A filtering algorithm and direction identification method are presented for the positioning system of the mid-speed maglev train. Considering the special structure of the mid-speed maglev train, the ground position estimation method is adopted for its traction system. As the train is running, the induction loop-cable receives the signal sent by the on-board antenna to detect the position and direction of the train. But the height of the on-board antenna relative to the loop-cable is highly vulnerable to the change of the suspension height and the magnetic field produced by the traction during traveling, which may lead to amplitude fluctuation of the received signal. Consequently, the position estimation may be inaccurate. Therefore, a discrete second-order nonlinear trackdifferentiator is proposed based on the boundary characteristic curves, and the new differentiator could also extract the running direction of the train for the traction system. The experimental results show that the tracking differentiator can effectively filter out the signal interference and can provide accurate direction signal.展开更多
基金Project(QZKFKT2023-012)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,China。
文摘Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金Project(11226144) supported by the National Natural Science Foundation of China
文摘A filtering algorithm and direction identification method are presented for the positioning system of the mid-speed maglev train. Considering the special structure of the mid-speed maglev train, the ground position estimation method is adopted for its traction system. As the train is running, the induction loop-cable receives the signal sent by the on-board antenna to detect the position and direction of the train. But the height of the on-board antenna relative to the loop-cable is highly vulnerable to the change of the suspension height and the magnetic field produced by the traction during traveling, which may lead to amplitude fluctuation of the received signal. Consequently, the position estimation may be inaccurate. Therefore, a discrete second-order nonlinear trackdifferentiator is proposed based on the boundary characteristic curves, and the new differentiator could also extract the running direction of the train for the traction system. The experimental results show that the tracking differentiator can effectively filter out the signal interference and can provide accurate direction signal.