期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种改进的混合蛙跳和K均值结合的聚类算法 被引量:6
1
作者 喻金平 张勇 +1 位作者 廖列法 梅宏标 《计算机工程与科学》 CSCD 北大核心 2016年第2期356-362,共7页
传统K均值聚类(KMC)算法过分依赖初始值的设置,容易陷入局部最优;混合蛙跳算法(SFLA)存在收敛速度和搜索速度较慢、局部和全局信息交流不全面等缺点。针对以上缺点,首先提出一种改进的混合蛙跳算法(MSFLA)。该算法根据粒子群优化和差分... 传统K均值聚类(KMC)算法过分依赖初始值的设置,容易陷入局部最优;混合蛙跳算法(SFLA)存在收敛速度和搜索速度较慢、局部和全局信息交流不全面等缺点。针对以上缺点,首先提出一种改进的混合蛙跳算法(MSFLA)。该算法根据粒子群优化和差分进化思想,在青蛙个体变异时,引入上一次移动距离的权重惯性系数和缩放因子,从种群中的最优位置和历史最优位置之间的随机点出发,以子群内的青蛙的平均值和最差位置差值为步长进行青蛙个体的更新操作。再将MSFLA与KMC算法结合提出MSFLA-KMC算法,有效地克服了KMC算法过分依赖初始值设置问题,同时降低了KMC算法陷入局部最优的可能性。实验结果表明,MSFLA具有较强的寻优能力,MSFLA-KMC算法则具有更好的聚类性能。 展开更多
关键词 K均值算法 混合蛙跳算法 距离更新公式 适应度函数 聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部