期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
具有最小距离拉普拉斯谱半径的双圈图(英文)
1
作者 樊丹丹 牛爱红 王国平 《工程数学学报》 CSCD 北大核心 2020年第1期121-130,共10页
一个连通图的距离拉普拉斯矩阵的最大特征值称为这个图的距离拉普拉斯谱半径.本文中,我们先得到距离拉普拉斯谱半径的一个好的下界,然后利用这个下界确定了单圈图中具有最小距离拉普拉斯谱半径的唯一极图.最后,再次利用这个下界,并结合... 一个连通图的距离拉普拉斯矩阵的最大特征值称为这个图的距离拉普拉斯谱半径.本文中,我们先得到距离拉普拉斯谱半径的一个好的下界,然后利用这个下界确定了单圈图中具有最小距离拉普拉斯谱半径的唯一极图.最后,再次利用这个下界,并结合距离拉普拉斯矩阵的特征多项式确定出了双圈图中具有最小距离拉普拉斯谱半径的极图. 展开更多
关键词 距离拉普拉斯谱半径 单圈图 双圈图
在线阅读 下载PDF
具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径(英文) 被引量:1
2
作者 余桂东 龚奇娟 段兰 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第3期176-180,共5页
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号... 一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值. 展开更多
关键词 距离无符号拉普拉斯矩阵 距离无符号拉普拉斯半径
在线阅读 下载PDF
给定团数的图的距离无符号拉普拉斯谱半径
3
作者 李金溪 杨墁 尤利华 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期118-123,共6页
设G是n阶简单连通图,T(G)表示图G的点传递度对角矩阵,D(G)表示距离矩阵,G的距离无符号拉普拉斯矩阵定义为:Q(G)=T(G)+D(G),相应的谱半径(即最大特征值)记作q^D(G).图G中一个相互邻接的顶点子集称为G的一个团,定义G的团数为其最大团的顶... 设G是n阶简单连通图,T(G)表示图G的点传递度对角矩阵,D(G)表示距离矩阵,G的距离无符号拉普拉斯矩阵定义为:Q(G)=T(G)+D(G),相应的谱半径(即最大特征值)记作q^D(G).图G中一个相互邻接的顶点子集称为G的一个团,定义G的团数为其最大团的顶点个数,记作ω(G).图G的一个正常着色是指使得G中任意2个相邻的顶点着不同颜色的一种着色方案.在G的所有正常着色中,所需颜色数目的最小值称为G的色数,记作!(G).显见,!(G)≥ω(G).为了研究给定团数ω(G)=ω的n阶简单连通图G中取得最小距离无符号拉普拉斯谱半径的极图,文中综合运用代数、矩阵论与图论等方法,分如下2种情形进行讨论:(1)!(G)=ω(G)=ω;(2)X(G)>ω(G)=ω.证明了Turan图T_(n,ω)是团数为ω的n阶简单连通图中具有最小距离无符号拉普拉斯谱半径的唯一图. 展开更多
关键词 连通图 团数 距离无符号拉普拉斯半径
在线阅读 下载PDF
距离无符号拉普拉斯谱半径的一个注记
4
作者 王燕娜 周波 《应用数学》 CSCD 北大核心 2022年第3期695-700,共6页
本文提出三种使得距离无符号拉普拉斯谱半径变小的图的嫁接变换,并确定了距离无符号拉普拉斯谱半径取得最小值的恰有k个圈且含有悬挂顶点的n阶仙人掌图.
关键词 距离无符号拉普拉斯半径 嫁接变换 仙人掌图 悬挂顶点
在线阅读 下载PDF
剖分图的联图的距离矩阵相关谱
5
作者 卢鹏丽 栾睿 刘文智 《兰州理工大学学报》 CAS 北大核心 2022年第3期154-162,共9页
利用正则图的关联矩阵与其邻接矩阵及其线图的邻接矩阵间的关系,证明了两个正则图的剖分边边联图、剖分点点联图和剖分点边联图的距离谱、距离拉普拉斯谱和距离无符号拉普拉斯谱可表示为原图的邻接谱.
关键词 距离 距离拉普拉斯谱 距离无符号拉普拉斯
在线阅读 下载PDF
Indu-Bala乘积图的广义距离谱 被引量:2
6
作者 卢鹏丽 刘文智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第9期1366-1370,共5页
为了完善组合图的距离谱理论,减少图谱的计算复杂度,本文依据矩阵论和图论相关知识,计算了Indu-Bala乘积图G1▽G2的广义距离谱,进而得到其距离拉普拉斯谱和距离无符号拉普拉斯谱;由所得谱证明了一类距离(无符号)拉普拉斯整谱图Kn▽Kn+1... 为了完善组合图的距离谱理论,减少图谱的计算复杂度,本文依据矩阵论和图论相关知识,计算了Indu-Bala乘积图G1▽G2的广义距离谱,进而得到其距离拉普拉斯谱和距离无符号拉普拉斯谱;由所得谱证明了一类距离(无符号)拉普拉斯整谱图Kn▽Kn+1;作为应用,得到了一类特殊图Kn▽Kn+1的距离(无符号)拉普拉斯谱能量。 展开更多
关键词 图论 距离(无符号)拉普拉斯矩阵 广义距离矩阵 组合图 广义距离 距离(无符号)拉普拉斯 能量
在线阅读 下载PDF
k路覆盖图的新充分条件(英文)
7
作者 贾会才 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2019年第6期666-669,675,共5页
设G是一个n阶简单连通图。如果其顶点集V (G)能被k条或更少的点不交的路覆盖,则图G是k-路覆盖的。分别用距离谱半径、距离无符号拉普拉斯谱半径、Wiener指数和Harary指数得到了图G是k-路覆盖的新的充分条件。
关键词 k-路覆盖 距离半径 距离无符号拉普拉斯半径 WIENER指数 Harary指数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部