期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
生成式对抗神经网络的多帧红外图像超分辨率重建 被引量:18
1
作者 李方彪 何昕 +2 位作者 魏仲慧 何家维 何丁龙 《红外与激光工程》 EI CSCD 北大核心 2018年第2期17-24,共8页
生成式对抗神经网络在约束图像生成表现出了巨大潜力,使得其适合运用于图像超分辨率重建。但是使用生成式对抗神经网络重建后的超分辨率图像存在过度平滑,缺少高频细节信息的缺点。针对单帧图像超分辨率重建方法不能有效利用图像序列间... 生成式对抗神经网络在约束图像生成表现出了巨大潜力,使得其适合运用于图像超分辨率重建。但是使用生成式对抗神经网络重建后的超分辨率图像存在过度平滑,缺少高频细节信息的缺点。针对单帧图像超分辨率重建方法不能有效利用图像序列间的时间-空间相关性的问题,提出了一种基于生成式对抗神经网络的多帧红外图像超分辨率重建方法(M-GANs)。首先,对低分辨率图像序列进行运动补偿;其次,使用权值表示卷积层对运动补偿后的图像序列进行权值转换计算;最后,将其输入生成式对抗重建网络,输出重建后的高分辨率图像。实验结果表明:文中方法在主观及客观评价中均优于当前代表性的超分辨率重建方法。 展开更多
关键词 分辨率重建 深度学习 生成对抗神经网络 红外成像
在线阅读 下载PDF
基于生成对抗网络改进的更快速区域卷积神经网络交通标志检测 被引量:4
2
作者 高忠文 于立国 《汽车技术》 CSCD 北大核心 2020年第7期14-18,共5页
针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数... 针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数量,生成包含小目标的候选区域,再使用生成网络对候选区域中的模糊小目标进行上采样,生成高分辨率图像,最后使用分类损失函数与回归损失函数对判别网络进行改进。试验结果表明,Faster R-CNN和生成对抗网络相结合的检测算法可以提高远距离小目标交通标志检测性能。 展开更多
关键词 交通标志检测 更快速区域卷积神经网络 生成对抗网络 分辨重建
在线阅读 下载PDF
生成对抗网络的单图像超分辨率重建方法 被引量:20
3
作者 彭晏飞 高艺 +2 位作者 杜婷婷 桑雨 訾玲玲 《计算机科学与探索》 CSCD 北大核心 2020年第9期1612-1620,共9页
基于深度卷积神经网络的超分辨率重建方法虽然有较高的峰值信噪比(PSNR),但重建结果在大尺度因子下存在缺乏高频信息和纹理细节,视觉感知效果差的问题。针对这一问题,提出了一种基于生成对抗网络的单图像超分辨率重建方法。首先迁移支... 基于深度卷积神经网络的超分辨率重建方法虽然有较高的峰值信噪比(PSNR),但重建结果在大尺度因子下存在缺乏高频信息和纹理细节,视觉感知效果差的问题。针对这一问题,提出了一种基于生成对抗网络的单图像超分辨率重建方法。首先迁移支持向量机中的hinge损失作为目标函数,其次使用更加稳定、抗噪性更强的Charbonnier损失代替L2损失函数,最后去掉了残差块和判别器中对图像超分辨率不利的批规范化层,并在生成器和判别器中使用谱归一化来减小计算开销,稳定模型训练。实验结果表明,在4倍放大尺度因子下,相较其他对比方法,该方法重建图像的PSNR值最高提升4.6 dB,SSIM值最高提升0.1,测试时间较短。实验数据和效果图均表明该方法重建的超分辨率图像视觉效果较好,且有更高的PSNR和SSIM值。 展开更多
关键词 分辨率重建 生成对抗网络(GAN) 深度学习 卷积神经网络(CNN) 损失函数
在线阅读 下载PDF
基于生成对抗网络的多幅离焦图像超分辨率重建算法 被引量:4
4
作者 斯捷 肖雄 +2 位作者 李泾 马明勋 毛玉星 《计算机工程》 CAS CSCD 北大核心 2021年第9期266-273,共8页
为提高超分辨率算法重建出的图像质量,提出融合多幅离焦图像的超分辨率重建算法。以离焦图像作为切入点,利用自编码器提取离焦图像中的重要特征,根据空间特征变换层结构,将离焦特征与原始特征相结合,完成图像的超分辨率重建。在CelebA... 为提高超分辨率算法重建出的图像质量,提出融合多幅离焦图像的超分辨率重建算法。以离焦图像作为切入点,利用自编码器提取离焦图像中的重要特征,根据空间特征变换层结构,将离焦特征与原始特征相结合,完成图像的超分辨率重建。在CelebA人脸数据集上进行实验,结果表明,与传统插值算法及SRGAN算法相比,所提算法在大多数情况下能获得更高峰值信噪比及结构相似性数值,能生成质量更高的重建图像。 展开更多
关键词 自编码器 图像特征提取 生成对抗网络 分辨率重建 深度神经网络
在线阅读 下载PDF
生成式对抗网络在超分辨率图像重建中的应用 被引量:6
5
作者 汪鑫耘 李丹 《计算机科学与探索》 CSCD 北大核心 2020年第4期680-687,共8页
针对现有卷积神经网络图像超分辨率算法容易出现过拟合、损失函数的收敛性不足等问题,结合超分辨率算法和生成式对抗网络(GAN)理论,设计一种基于生成式对抗网络的超分辨率算法PESRGAN用于恢复四倍下采样的图像。首先使用残差密集块(RDB... 针对现有卷积神经网络图像超分辨率算法容易出现过拟合、损失函数的收敛性不足等问题,结合超分辨率算法和生成式对抗网络(GAN)理论,设计一种基于生成式对抗网络的超分辨率算法PESRGAN用于恢复四倍下采样的图像。首先使用残差密集块(RDB)作为基本结构单元,有效避免了过拟合问题;其次使用双层特征损失并使用渗透指数(PI)作为损失的权值,更好地去学习低分辨率到高分辨率图像之间的映射关系;同时使用VGG19作为判别网络高分辨率图像进行分类;最后使用经典数据集,将PESRGAN算法与双三次插值(Bicubic)、SRGAN、ESRGAN算法在客观参数和主观视觉效果进行对比。实验结果表明:在经典数据集上,PESRGAN的平均峰值信噪比(PSNR)达到25.4 dB、平均结构相似性(SSIM)达到0.73,平均渗透指数(PI)达到1.15,在客观参数和主观评价上均优于其他算法,证明了PESRGAN有良好的超分辨率重建的效果。 展开更多
关键词 卷积神经网络(CNN) 分辨率图像重建 生成对抗网络(GAN) 四倍采样
在线阅读 下载PDF
基于WGAN的智能超表面辅助系统的信道估计研究
6
作者 康晓非 王甜 《电波科学学报》 北大核心 2025年第1期164-171,共8页
针对智能超表面(reconfigurable intelligent surface,RIS)辅助的毫米波通信中系统复杂和难以获取准确信道状态信息(channel state information,CSI)的问题,设计了一种基于Chan-SRWGAN网络算法的信道估计方案。该方案采用混合有源/无源... 针对智能超表面(reconfigurable intelligent surface,RIS)辅助的毫米波通信中系统复杂和难以获取准确信道状态信息(channel state information,CSI)的问题,设计了一种基于Chan-SRWGAN网络算法的信道估计方案。该方案采用混合有源/无源RIS架构,首先利用最小二乘(least square,LS)算法获取有源元件处信道估计值,再通过插值得到信道初步估计,最后利用Chan-SRWGAN深度学习网络将其重构为信道精确估计。仿真结果表明,所提方案的归一化均方误差(normalized mean squared error,NMSE)性能优于LS、正交匹配追踪(orthogonal matching pursuit,OMP)、同步OMP(simultaneous OMP,SOMP)、深度神经网络(deep neural network,DNN)、超分辨率卷积神经网络(super-resolution convolutional neural network,SRCNN)信道估计算法,证明了方案的可行性。 展开更多
关键词 智能表面(RIS) 信道估计 深度学习 Wasserstein生成对抗网络(WGAN) 分辨率卷积神经网络(SRCNN)
在线阅读 下载PDF
利用对抗性边缘学习模型生成超分辨率图像 被引量:4
7
作者 白明明 张运杰 张膑 《科学技术与工程》 北大核心 2021年第19期7891-7898,共8页
大部分基于卷积神经网络的图像超分辨率方法都是采用端到端的模式,这类图像超分辨率方法往往存在重构图像纹理边缘模糊、高频信息缺失的问题。为了改善该问题,在SRGAN(super-resolution generation adversarial networks)的基础上提出... 大部分基于卷积神经网络的图像超分辨率方法都是采用端到端的模式,这类图像超分辨率方法往往存在重构图像纹理边缘模糊、高频信息缺失的问题。为了改善该问题,在SRGAN(super-resolution generation adversarial networks)的基础上提出了一种基于对抗性图像边缘学习的深层网络模型,将图像边缘信息得到充分利用,来引导超分网络生成更加真实的高分辨率图像。该网络模型由两个生成对抗网络所组成,首先利用一个生成对抗网络来生成低分辨率图像所对应的高分辨率边缘特征图,然后再用高分辨率边缘特征图来约束和引导第二个生成对抗网络,使之重构出来的高分辨率图像纹理边缘更加清晰,更好地恢复图像边缘的高频细节。在Set5、Set14、BSD100、Urban100和Manga109基准测试集上的实验结果表明该算法重构出的高分辨率图像更加接近真实的图像,在峰值信噪比、结构相似度和感知指标上都有不错的表现。 展开更多
关键词 分辨率 卷积神经网络 生成对抗网络 边缘特征学习
在线阅读 下载PDF
基于特征保真网络的图像超分辨研究 被引量:1
8
作者 李羽馨 张选德 《陕西科技大学学报》 北大核心 2024年第1期161-168,共8页
目前,基于深度神经网络的方法是图像超分辨(Super Resolution, SR)研究的主流,该方法利用大样本端到端地训练一个低分辨图像至高分辨图像的映射.SR研究主要采用像素损失来约束以上训练过程,但会使得图像趋向平滑.引入生成对抗网络能够... 目前,基于深度神经网络的方法是图像超分辨(Super Resolution, SR)研究的主流,该方法利用大样本端到端地训练一个低分辨图像至高分辨图像的映射.SR研究主要采用像素损失来约束以上训练过程,但会使得图像趋向平滑.引入生成对抗网络能够恢复出逼真的纹理细节,但重建的超分辨图像却存在一定程度的结构畸变.这都可以归结为底层特征失真问题.对此,提出一种特征保真的超分辨网络,该网络包含超分辨重建分支和特征保真分支.一方面,通过特征保真分支恢复高分辨率图像的底层特征,为SR过程提供额外的约束;另一方面,为消除不同分支间的域差异,设计通道调制系数实现特征信息的有效传递.特征保真分支能够一定程度上缓解重构图像的特征失真问题.实验结果表明,与目前主流的SR方法相比,本文方法以较少的参数量,能够获得较好的重构效果. 展开更多
关键词 深度神经网络 图像分辨 生成对抗网络 特征保真分支
在线阅读 下载PDF
基于自适应卷积与联合损失函数的人脸图像超分辨率重建
9
作者 李培育 张雅丽 +1 位作者 张奕博 赵益辰 《科学技术与工程》 北大核心 2025年第6期2442-2452,共11页
针对当前人脸图像超分辨率重建算法模型卷积单一、感受野不足、单判别网络反馈信息不精确等问题,设计了一种基于自适应卷积与联合损失函数的算法。模型使用生成对抗网络架构,生成器方面,使用自适应卷积构造双路残差块并进一步组成高效... 针对当前人脸图像超分辨率重建算法模型卷积单一、感受野不足、单判别网络反馈信息不精确等问题,设计了一种基于自适应卷积与联合损失函数的算法。模型使用生成对抗网络架构,生成器方面,使用自适应卷积构造双路残差块并进一步组成高效的残差组,能自主学习在不同感受野下提取到的特征权重并补充单一支路遗漏的信息。判别器方面使用Vgg与U-net架构网络作为双判别网络,并使用双判别结果计算对抗损失,该损失与内容损失、感知损失组成联合损失函数。在celeba数据集上的实验表明,该算法与RWSA算法相比峰值信噪比(peak signal noise ratio,PSNR)值提高1.166 dB,结构相似度(structure similarity,SSIM)值提高0.037,学习感知图像块相似度(learned perceptual image patch similarity,LPIPS)值优化0.033,感知因子(perceptual index,PI)指标优化0.119,与其他多种主流算法相比在图像细节清晰度方面具有优势。 展开更多
关键词 分辨率重建 自适应卷积 联合损失函数 生成对抗网络 卷积神经网络
在线阅读 下载PDF
基于脉冲注意力机制的轻量化面部超分重建方法
10
作者 李娇 高磊怡 +2 位作者 张瑞欣 吴越 邓红霞 《计算机工程与科学》 北大核心 2025年第3期494-503,共10页
基于深度学习的人脸超分辨率研究近年来取得了重大进展,而如何在保证恢复面部精细自然纹理的同时限制网络模型复杂度,满足在轻量化设备上使用的需求,是该领域的一个难点。为此,提出了一种基于脉冲注意力机制的轻量化人脸超分重建方法。... 基于深度学习的人脸超分辨率研究近年来取得了重大进展,而如何在保证恢复面部精细自然纹理的同时限制网络模型复杂度,满足在轻量化设备上使用的需求,是该领域的一个难点。为此,提出了一种基于脉冲注意力机制的轻量化人脸超分重建方法。所提出的新型脉冲注意力机制将脉冲耦合神经网络提取的多轮次全局信息融合进窗口自注意力机制,利用全局信息和局部信息以改善方法的学习能力;采用对抗生成网络结构,构建基于窗口自注意力的渐进式生成器以保证方法的轻量化。在CelebA和Helen数据集上的实验结果表明,该方法在LPIPS和MPS感知评价指标上表现优异;与同参数量级的方法相比,该方法在所有指标上均有大幅提升,在主观视觉质量上也表现优秀。 展开更多
关键词 人脸分辨率 脉冲耦合神经网络 注意力机制 轻量化网络 生成对抗网络
在线阅读 下载PDF
基于CNN与GAN深度学习模型近壁面湍流场超分辨率重构的精细化研究 被引量:2
11
作者 吴昊恺 陈耀然 +2 位作者 周岱 陈文礼 曹勇 《力学学报》 EI CAS CSCD 北大核心 2024年第8期2231-2242,共12页
由城市抗风减灾的目标出发,城市边界层的高保真再现是工程界亟待解决的关键问题.基于高精度的近地风场,有望实现真实环境下城市建筑风致效应的准确预测.传统的基于气象模型的城市风场模拟方法存在预测耗时长、成本昂贵、求解尺度过高等... 由城市抗风减灾的目标出发,城市边界层的高保真再现是工程界亟待解决的关键问题.基于高精度的近地风场,有望实现真实环境下城市建筑风致效应的准确预测.传统的基于气象模型的城市风场模拟方法存在预测耗时长、成本昂贵、求解尺度过高等缺陷.为更准确、高效地预测边界层的空间变化,研究利用超精度卷积神经网络(SRCNN)与生成对抗神经网络(SRGAN),在空间上将低精度的近壁面湍流场超精度重构成高精度的风场.利用近壁面湍流直接数值模拟的公共数据库训练模型并评价模型的重构性能.为寻求合适的超精度模型生成方式,研究围绕训练样本量及网络深度,开展详细的敏感性分析,确定合适的训练网络及其较优的训练参数设置.同时,基于经不同下采样因子处理的低精度流场输入,分析模型在近壁面湍流重构中的适用范围.研究发现,对比于SRCNN模型,SRGAN模型对近壁面湍流内小尺度结构的重现效果更佳.当基于4层卷积残差块、300样本量开展训练时,所生成的SRGAN模型可在较低的训练代价下实现较优的重构效果.当进行10倍超精度重构时,SRGAN模型可保证较理想的预测精度.研究成果为边界层风场的准确重构提供技术支撑,为城区建筑物风致效应的高效预测提供精确的入流条件. 展开更多
关键词 深度学习 超精度生成对抗神经网络 精度卷积神经网络 精度重构 城市边界层风场
在线阅读 下载PDF
复杂退化模型下图像超分辨率算法综述 被引量:1
12
作者 陈伟 吴凡 +1 位作者 田子建 刘珏廷 《郑州大学学报(理学版)》 CAS 北大核心 2024年第4期1-10,共10页
图像的超分辨率(super-resolution,SR)一直以来是计算机视觉(computer vision,CV)领域的一项热门的研究方向,它旨在从单张或多张低分辨率图像中通过一系列的图像处理和深度学习技术,重建带有丰富边缘纹理等细节特征的高分辨率图像。自... 图像的超分辨率(super-resolution,SR)一直以来是计算机视觉(computer vision,CV)领域的一项热门的研究方向,它旨在从单张或多张低分辨率图像中通过一系列的图像处理和深度学习技术,重建带有丰富边缘纹理等细节特征的高分辨率图像。自从深度卷积神经网络应用于图像超分辨率算法后,其性能相较于传统的基于重构和基于样例的SR算法有了非常大的提升。然而,目前的SR算法在实际场景应用、算法性能、模型质量评估标准等方面仍然需要改良和优化。因此,为推进图像超分辨率技术的发展,总结并分析了基于深度学习的SR算法。首先,将目前主流的SR算法分为基于卷积神经网络、基于生成对抗网络、基于Transformer这三类;其次,详细评述了每一类算法的网络结构、算法优缺点、算法特色及适用场景等;然后,对常见的超分辨率数据集及各种评价指标进行阐述,重点比较了不同SR算法在各类数据集上的性能;最后,总结了图像超分辨率目前研究所面临的问题并探讨了图像超分辨率的未来研究方向。 展开更多
关键词 深度学习 分辨率 卷积神经网络 生成对抗网络 图像质量评价
在线阅读 下载PDF
基于多尺度特征映射网络的图像超分辨率重建 被引量:9
13
作者 段然 周登文 +1 位作者 赵丽娟 柴晓亮 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第7期1331-1339,共9页
针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法存在的重建网络浅、特征利用率低以及重建图像模糊等问题,提出基于多尺度特征映射网络的图像超分辨率重建方法.多尺度特征映射网络通过学习低分辨率(LR)特征与高分辨率(HR)特征之间... 针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法存在的重建网络浅、特征利用率低以及重建图像模糊等问题,提出基于多尺度特征映射网络的图像超分辨率重建方法.多尺度特征映射网络通过学习低分辨率(LR)特征与高分辨率(HR)特征之间的映射关系,将多个尺度的LR特征映射到HR特征空间,通过特征融合来提高重建过程中对特征的利用率;该方法定义了结合逐像素损失、感知损失和对抗损失的联合损失函数,从低频内容、图像边缘和局部纹理等方面均衡提升重建图像质量.对数据集Set5、Set14和BSD100的图片4倍下采样后进行测试,与当前主流方法进行比较和分析.实验证明,基于生成对抗的多尺度特征映射网络在提高图像感知质量方面表现优秀,重建的图像具有更加清晰的边缘和纹理,在客观评价上具有较好的评分. 展开更多
关键词 卷积神经网络 分辨率重建 生成对抗网络 深度学习 感知损失
在线阅读 下载PDF
混合阶通道注意力网络的单图像超分辨率重建 被引量:3
14
作者 姚鲁 宋慧慧 张开华 《计算机应用》 CSCD 北大核心 2020年第10期3048-3053,共6页
目前用于图像超分辨率重建的通道注意力机制存在注意力预测破坏每个通道和其权重的直接对应关系以及仅仅只考虑一阶或二阶通道注意力而没有综合考虑优势互补的问题,因此提出一种混合阶通道注意力网络的单图像超分辨率重建算法。首先,该... 目前用于图像超分辨率重建的通道注意力机制存在注意力预测破坏每个通道和其权重的直接对应关系以及仅仅只考虑一阶或二阶通道注意力而没有综合考虑优势互补的问题,因此提出一种混合阶通道注意力网络的单图像超分辨率重建算法。首先,该网络框架利用局部跨通道相互作用策略将之前一、二阶通道注意力模型采用的升降维改为核为k的一维卷积。这样不仅使得通道注意力预测更直接准确,而且得到的模型相比之前的通道注意力模型更简单;同时,采用改进一、二阶通道注意力模型以综合利用不同阶通道注意力的优势,提高网络判别能力。在基准数据集上的实验结果表明,和现有的超分辨率算法相比,所提算法重建图像的纹理细节和高频信息能得到更好的恢复,且在Set5和BSD100数据集上感知指数(PI)分别平均提高0.3和0.1。这表明此网络能更准确地预测通道注意力并综合利用了不同阶通道注意力,一定程度上提升了性能。 展开更多
关键词 通道注意力机制 生成对抗网络 图像分辨率重建 卷积神经网络 深度学习
在线阅读 下载PDF
基于深度学习的单幅图片超分辨率重构研究进展 被引量:11
15
作者 张宁 王永成 +1 位作者 张欣 徐东东 《自动化学报》 EI CSCD 北大核心 2020年第12期2479-2499,共21页
图像超分辨率重构技术是一种以一幅或同一场景中的多幅低分辨率图像为输入,结合图像的先验知识重构出一幅高分辨率图像的技术.这一技术能够在不改变现有硬件设备的前提下,有效提高图像分辨率.深度学习近年来在图像领域发展迅猛,它的引... 图像超分辨率重构技术是一种以一幅或同一场景中的多幅低分辨率图像为输入,结合图像的先验知识重构出一幅高分辨率图像的技术.这一技术能够在不改变现有硬件设备的前提下,有效提高图像分辨率.深度学习近年来在图像领域发展迅猛,它的引入为单幅图片超分辨率重构带来了新的发展前景.本文主要对当前基于深度学习的单幅图片超分辨率重构方法的研究现状和发展趋势进行总结梳理:首先根据不同的网络基础对十几种基于深度学习的单幅图片超分辨率重构的网络模型进行分类介绍,分析这些模型在网络结构、输入信息、损失函数、放大因子以及评价指标等方面的差异;然后给出它们的实验结果,并对实验结果及存在的问题进行总结与分析;最后给出基于深度学习的单幅图片超分辨率重构方法的未来发展方向和存在的挑战. 展开更多
关键词 深度学习 单幅图片分辨率 卷积神经网络 生成对抗网络
在线阅读 下载PDF
结合注意力机制的人脸超分辨率重建 被引量:10
16
作者 陈晓范 申海杰 +2 位作者 边倩 王振铎 田新志 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期148-153,共6页
因受成像设备限制,得到的人脸图像分辨率通常较低,针对此问题提出了一种将生成对抗网络和注意力机制相结合的方法,来对人脸图像进行多尺度超分辨率重建。将深度残差网络和深度神经网络分别作为生成器和判别器,并将注意力模块与深度残差... 因受成像设备限制,得到的人脸图像分辨率通常较低,针对此问题提出了一种将生成对抗网络和注意力机制相结合的方法,来对人脸图像进行多尺度超分辨率重建。将深度残差网络和深度神经网络分别作为生成器和判别器,并将注意力模块与深度残差网络中的残差块相结合,重建出与高分辨率图像高度相似且难以被判别器区分的超分辨率人脸图像。实验结果证明,所提出的方法能够有效地提升人脸图像的分辨率,同时也证明了注意力机制在图像细节信息重建中的重要作用。 展开更多
关键词 分辨率重建 生成对抗网络 注意力机制 深度残差网络 深度神经网络
在线阅读 下载PDF
用于图像超分辨率重构的深度学习方法综述 被引量:24
17
作者 王威 张彤 王新 《小型微型计算机系统》 CSCD 北大核心 2019年第9期1891-1896,共6页
随着深度学习算法首次被应用于图像超分辨率重构,基于深度学习的重构方法取得了比传统图像超分辨率重构方法更好的重构效果.随后,一系列改进的深度学习算法相继提出,重构效果也不断提升.本文系统地总结了基于深度学习的图像超分辨率重... 随着深度学习算法首次被应用于图像超分辨率重构,基于深度学习的重构方法取得了比传统图像超分辨率重构方法更好的重构效果.随后,一系列改进的深度学习算法相继提出,重构效果也不断提升.本文系统地总结了基于深度学习的图像超分辨率重构方法,主要可以分为:基于直连的浅层网络重构方法,基于深层特征的深层网络重构方法和基于生成式对抗网络重构方法.并且对比分析了不同网络模型的特点和不足.在主流数据集上对各种深度学习网络模型进行了比较,并根据当前基于深度学习模型的图像超分辨率重构方法的发展趋势,对基于深度学习模型的图像超分辨率重构方法未来的研究方向做了展望. 展开更多
关键词 图像分辨率重构 卷积神经网络 残差学习 密集连接网络 生成对抗网络
在线阅读 下载PDF
基于DNGAN的磁共振图像超分辨率重建算法 被引量:4
18
作者 戴朝霞 李锦欣 +3 位作者 张向东 徐旭 梅林 张亮 《计算机科学》 CSCD 北大核心 2022年第7期113-119,共7页
磁共振图像的质量会影响医生对患者身体情况的判断,高清晰度的磁共振图像更有利于医生做出准确的诊断。利用计算机技术对磁共振图像进行超分辨率重建,可以由低分辨率的磁共振图像得到高分辨率的磁共振图像。基于生成对抗网络强大的生成... 磁共振图像的质量会影响医生对患者身体情况的判断,高清晰度的磁共振图像更有利于医生做出准确的诊断。利用计算机技术对磁共振图像进行超分辨率重建,可以由低分辨率的磁共振图像得到高分辨率的磁共振图像。基于生成对抗网络强大的生成能力及其非监督学习特性,文中研究了基于生成对抗网络的磁共振图像超分辨率算法,设计了一个结合残差网络结构及DenseNet结构作为生成网络的网络模型DNGAN。该网络使用WGAN-GP理论作为对抗损失来稳定生成对抗网络的训练。除此之外,使用内容损失函数以及感知损失函数作为网络的损失函数。同时,为了更好地利用磁共振图像丰富的频域信息,将磁共振图像的频域信息作为频域损失函数添加到网络中。为了证明DNGAN模型的有效性,将其磁共振图像超分辨率实验结果与SRGAN以及双三次插值法的磁共振图像超分辨率重建结果进行对比,表明DNGAN模型能够有效地对磁共振图像进行超分辨率重建。 展开更多
关键词 分辨率重建 生成对抗网络 磁共振图像 卷积神经网络 DenseNet
在线阅读 下载PDF
深度学习的单幅图像超分辨率重建方法综述 被引量:12
19
作者 黄健 赵元元 +1 位作者 郭苹 王静 《计算机工程与应用》 CSCD 北大核心 2021年第18期13-23,共11页
图像超分辨率重建即使用特定算法将同一场景中的低分辨率模糊图像恢复成高分辨率图像。近年来,随着深度学习的蓬勃发展,该技术在很多领域都得到了广泛的应用,在图像超分辨率重建领域中基于深度学习的方法被研究的越来越多。为了掌握当... 图像超分辨率重建即使用特定算法将同一场景中的低分辨率模糊图像恢复成高分辨率图像。近年来,随着深度学习的蓬勃发展,该技术在很多领域都得到了广泛的应用,在图像超分辨率重建领域中基于深度学习的方法被研究的越来越多。为了掌握当前基于深度学习的图像超分辨率重建算法的发展状况和研究趋势,对目前图像超分辨率的流行算法进行综述。主要从现有单幅图像超分辨算法的网络模型结构、尺度放大方法和损失函数三个方面进行详细论述,分析各类方法的缺陷和益处,同时通过实验对比分析不同网络模型、不同损失函数在主流数据集上的重建效果,最后展望基于深度学习的单幅图像超分辨重建算法未来的发展方向。 展开更多
关键词 图像分辨率 深度学习 卷积神经网络 生成对抗网络
在线阅读 下载PDF
基于深度学习的遥感图像超分辨率重建方法综述 被引量:9
20
作者 成科扬 荣兰 +1 位作者 蒋森林 詹永照 《郑州大学学报(工学版)》 CAS 北大核心 2022年第5期8-16,共9页
基于深度学习的遥感图像超分辨率重建方法是计算机视觉中的重要方法之一。传统的遥感图像超分辨率重建方法已无法满足地物目标识别和土地检测等应用的需求,如何利用深度学习来重建遥感图像的分辨率是目前要解决的问题。结合国内外最新... 基于深度学习的遥感图像超分辨率重建方法是计算机视觉中的重要方法之一。传统的遥感图像超分辨率重建方法已无法满足地物目标识别和土地检测等应用的需求,如何利用深度学习来重建遥感图像的分辨率是目前要解决的问题。结合国内外最新研究现状,将基于深度学习的遥感图像超分辨率重建方法分成3大类:单幅遥感图像超分辨率重建方法、多幅遥感图像超分辨率重建方法和多/高光谱遥感图像超分辨率重建方法。系统梳理了基于深度学习的单幅遥感图像超分辨率重建方法,包括基于多尺度特征提取的方法、结合小波变换的方法、沙漏状生成网络的方法、边缘增强网络的方法以及可跨传感器的方法。总结了基于深度学习的多幅遥感图像和多/高光谱遥感图像超分辨率重建方法中目前主流的方法。通过实验结果分析了遥感图像超分辨率重建方法目前效果最好的单幅图像超分辨率重建方法是基于GAN的方法,但是多幅遥感图像和多/高光谱遥感图像超分辨率重建效果仍然不佳,存在配准融合、多源信息融合等问题。最后,对基于深度学习的遥感图像超分辨率重建方法未来可能的发展趋势进行了展望,指出构建针对遥感图像特点的神经网络结构,无监督学习的遥感图像超分辨率重建方法,以及多源遥感图像的超分辨率重建方法是未来的研究趋势。 展开更多
关键词 遥感图像 分辨率重建 深度学习 卷积神经网络 生成对抗网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部