On the basis of an experiment in ultrasonic enhanced ammonia leaching of tailings, the effect of ultrasonic waves on copper dissolution was studied. The mechanism of ultrasonic enhanced tailing leaching was analyzed a...On the basis of an experiment in ultrasonic enhanced ammonia leaching of tailings, the effect of ultrasonic waves on copper dissolution was studied. The mechanism of ultrasonic enhanced tailing leaching was analyzed and a technique of ultrasonic enhanced pipe leaching of tailings was proposed. The results show that tailings with ultrasonic treatment can leach up to 89.5% of Cu, which is 13.5% more than those without the treatment. Ultrasonic technology is capable of improving leaching rates and the overall recovery of tailing leaching. Impact waves and micro jet streams can strip and erode affected surfaces of tailing particles to create new active surfaces and disturbances can intensify mass transfer processes in "dead zones". The technique of ultrasonic enhanced pipe leaching of tailings is a combination of existing agitation enhancement with ultrasonic enhancement and can improve mineral recovery.展开更多
Objective To study the value of ultrasound elastography in evaluation of ethanol-induced lesions of liver. Methods Alcohol with a dose of 2 ml was injected into a fresh porcine liver under ultrasound guidance to creat...Objective To study the value of ultrasound elastography in evaluation of ethanol-induced lesions of liver. Methods Alcohol with a dose of 2 ml was injected into a fresh porcine liver under ultrasound guidance to create stiff necrosis. Then freehand elastography of the lesion from the identical scan plane was obtained with SONOLINE Antares system using VF10-5 probe at about every 30 seconds till 6 minutes later. The original high quality radiofrequency data were acquired through an ultrasound research interface which was provided by the ultrasound system. Then, corresponding elastograms were produced offline using cross-correlation technique and compared with gross pathology findings. Results Gray-scale sonogram showed a hyperechoic area with acoustic shadow below appeared immediately after alcohol injection. The hyperechoic area tended to be diffuse and its boundary to be illegible with time. On the contrary, the ethanol-induced lesion in elastogram appeared as a low swain hard region surrounded by high strain soft hepatic tissues, with clear but irregular boundaries. Sequential elastograms with the sketched lesion boundaries showed that the lesion area increased in the first 3 minutes after ethanol injection, and then reached a plateau which corresponding to gross specimen. Conclusion Ultrasound elastography is capable of detecting and evaluating the diffusion of ethanol-induced hepatic lesion, and more sensitive and accurate than routine sonography.展开更多
基金Projects 2004CB619205 supported by the National Basic Research Program of China50574099 by the National Natural Science Foundation of China06JJ30024 by the Natural Science Foundation of Hunan Province
文摘On the basis of an experiment in ultrasonic enhanced ammonia leaching of tailings, the effect of ultrasonic waves on copper dissolution was studied. The mechanism of ultrasonic enhanced tailing leaching was analyzed and a technique of ultrasonic enhanced pipe leaching of tailings was proposed. The results show that tailings with ultrasonic treatment can leach up to 89.5% of Cu, which is 13.5% more than those without the treatment. Ultrasonic technology is capable of improving leaching rates and the overall recovery of tailing leaching. Impact waves and micro jet streams can strip and erode affected surfaces of tailing particles to create new active surfaces and disturbances can intensify mass transfer processes in "dead zones". The technique of ultrasonic enhanced pipe leaching of tailings is a combination of existing agitation enhancement with ultrasonic enhancement and can improve mineral recovery.
基金Supported by National Natural Science Foundation of China (30470466)
文摘Objective To study the value of ultrasound elastography in evaluation of ethanol-induced lesions of liver. Methods Alcohol with a dose of 2 ml was injected into a fresh porcine liver under ultrasound guidance to create stiff necrosis. Then freehand elastography of the lesion from the identical scan plane was obtained with SONOLINE Antares system using VF10-5 probe at about every 30 seconds till 6 minutes later. The original high quality radiofrequency data were acquired through an ultrasound research interface which was provided by the ultrasound system. Then, corresponding elastograms were produced offline using cross-correlation technique and compared with gross pathology findings. Results Gray-scale sonogram showed a hyperechoic area with acoustic shadow below appeared immediately after alcohol injection. The hyperechoic area tended to be diffuse and its boundary to be illegible with time. On the contrary, the ethanol-induced lesion in elastogram appeared as a low swain hard region surrounded by high strain soft hepatic tissues, with clear but irregular boundaries. Sequential elastograms with the sketched lesion boundaries showed that the lesion area increased in the first 3 minutes after ethanol injection, and then reached a plateau which corresponding to gross specimen. Conclusion Ultrasound elastography is capable of detecting and evaluating the diffusion of ethanol-induced hepatic lesion, and more sensitive and accurate than routine sonography.