期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
对比学习增强的多行为超图神经网络推荐模型
1
作者 王光 李佳欣 《计算机应用研究》 北大核心 2025年第8期2304-2311,共8页
多行为推荐(multi-behavior recommendation,MBR)在互联网平台中愈发重要,但现有方法仍面临两大挑战:a)无法刻画用户不同行为下的复杂兴趣偏好;b)难以建模不同行为间的相互关系。基于此,提出一种对比学习增强的多行为超图神经网络模型(m... 多行为推荐(multi-behavior recommendation,MBR)在互联网平台中愈发重要,但现有方法仍面临两大挑战:a)无法刻画用户不同行为下的复杂兴趣偏好;b)难以建模不同行为间的相互关系。基于此,提出一种对比学习增强的多行为超图神经网络模型(multi-behavior hypergraph neural network model enhanced with contrastive lear-ning,MBHCL),在建模用户复杂多类型交互的同时,结合对比学习捕获行为间共性与差异,以获取更优嵌入表示,缓解冷启动与数据稀疏问题。具体地,MBHCL首先构建用户-项目多行为交互超图,以刻画用户对项目不同维度的偏好;其次设计三个对比任务整合单行为表示,通过捕捉行为间的共性与差异获取全面用户兴趣偏好。最终,MBHCL在四个真实场景数据集上进行对比实验。结果表明,在Tmall和BeiBei数据集上,HIT和NDCG指标有至少4.8%的提升,在Kuairand和Yelp数据集上,HIT和NDCG指标至少提升3.6%,并通过消融实验验证了各模块的有效性,同时显著改善了冷启动用户推荐效果。 展开更多
关键词 推荐系统 多行为推荐 神经网络 超图 对比学习 自监督学习
在线阅读 下载PDF
基于多层超图卷积神经网络的故障诊断方法
2
作者 张元东 张先杰 +1 位作者 张若楠 张海峰 《复杂系统与复杂性科学》 北大核心 2025年第1期131-137,共7页
机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法... 机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法,该方法首先利用多种相似性指标构建出具有不同结构的多层超图,然后通过层内超图卷积以及层间图卷积的操作进行特征的提取与融合。在SEU的仿真数据集以及磨煤机组的真实数据集中进行实验,结果表明该方法可以有效地提高故障诊断的精度。 展开更多
关键词 超图神经网络(hgnn) 图卷积网络(GCN) 多层超图 故障诊断
在线阅读 下载PDF
基于完整超图神经网络的捆绑推荐模型
3
作者 王浩南 贺平安 代琦 《计算机应用研究》 北大核心 2025年第7期2003-2010,共8页
捆绑推荐通过提供一组预定义的商品组合来增强用户体验并提升商家销售业绩。在视频点播、音乐播放列表生成等众多服务生态系统中同样扮演着重要角色。现有的捆绑推荐方法常常依赖共享模型参数或多任务学习的方案,忽略了用户、商品及捆... 捆绑推荐通过提供一组预定义的商品组合来增强用户体验并提升商家销售业绩。在视频点播、音乐播放列表生成等众多服务生态系统中同样扮演着重要角色。现有的捆绑推荐方法常常依赖共享模型参数或多任务学习的方案,忽略了用户、商品及捆绑包三者之间的深层次联系,从而导致信息丢失,影响推荐系统的性能。针对上述问题,提出了一种创新框架——完整超图神经网络(CHNN)。首先,该框架构建一个完整的超图来表达用户、商品和捆绑包之间的三元关系,三元关系不仅包括用户、商品和捆绑包之间的相互联系,还包括用户和捆绑包的内部连接,可以有效地描述商品捆绑与用户偏好的关系。其次,模型包括初始化层、三卷积层和预测层。初始化层为每个用户、商品和捆绑包生成嵌入向量。三卷积层提取完整的超图信息,并利用用户-捆绑包图和商品-捆绑包图的信息来增强用户、商品和捆绑包的表示。预测层根据最终的嵌入向量提供建议。通过多层丰富的卷积操作,充分挖掘完整超图中包含的关联,以实现更准确的推荐。在网易和有书两个现实世界数据集上的实验表明,CHNN在recall指标上平均提升了2.4%,在NDCG指标上平均提升了2.75%,超越了现有的基线模型,展示了其在捆绑推荐领域的有效性。 展开更多
关键词 神经网络 捆绑推荐 超图 图卷积网络
在线阅读 下载PDF
结合GAT与卷积神经网络的知识超图链接预测
4
作者 庞俊 马志芬 +1 位作者 林晓丽 王蒙湘 《计算机工程与应用》 北大核心 2025年第9期194-201,共8页
知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,... 知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,缺乏对关系事实之间关联特征的表示学习。针对以上问题,提出了一种基于图注意力网络与卷积神经网络的链接预测方法(knowledge prediction based on GAT and convolutional neural network,HPGC)。一方面,采用改进的卷积网络(convolutional neural network,CNN)提取知识超图中节点实体表示的局部特征;另一方面,使用改进的GAT对节点和关系进行注意力建模,捕获节点之间的全局特征关系,并将两者进行融合,从而获取关系事实更全面的邻域结构,丰富超图关系事实的语义表示。此外,针对HPGC的GAT层输出矢量问题,引入多层感知机(multilayer perceptron,MLP)和正则化技术,提高模型训练的泛化能力。真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。 展开更多
关键词 知识超图 链接预测 卷积神经网络 注意力机制
在线阅读 下载PDF
基于双通道异质超图神经网络的引文推荐方法
5
作者 李瑞红 李晓红 +1 位作者 姚锦 王闪闪 《计算机工程与科学》 北大核心 2025年第2期361-369,共9页
针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节... 针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节点的局部和全局语义特征,获得异质图通道上关于目标节点的结构表征。其次,设计多种类型的超边,扩展异构数据信息。再次,使用超图编码节点间的交互,并利用超图神经网络捕获超图中潜在的复杂高阶语义关系,获得超图通道上关于目标节点的语义表征。最后,聚合2个通道上的信息,得到目标节点的最终语义表示,并计算目标论文节点与候选论文节点间的相关性,生成引用文献推荐列表。在DBLP和PubMed数据集上的实验结果表明,所提出的方法能有效提升引文推荐的质量,获得较好的推荐结果。 展开更多
关键词 引文推荐 异质图 超图神经网络 信息融合
在线阅读 下载PDF
基于多视角学习的图神经网络群组推荐模型
6
作者 王聪 史艳翠 《计算机应用》 北大核心 2025年第4期1205-1212,共8页
针对现有基于图神经网络(GNN)的群组推荐模型难以充分利用显隐式交互信息的问题,提出一种基于多视角学习的GNN群组推荐(GRGM)模型。先根据群组交互数据构造超图、二分图和超图投影图,并针对各个图结构的特性采用相应的GNN提取图节点特征... 针对现有基于图神经网络(GNN)的群组推荐模型难以充分利用显隐式交互信息的问题,提出一种基于多视角学习的GNN群组推荐(GRGM)模型。先根据群组交互数据构造超图、二分图和超图投影图,并针对各个图结构的特性采用相应的GNN提取图节点特征,从而充分表达用户、群组和项目之间的显隐式关系;再提出一种多视角信息融合策略,以获取最终的群组和项目表示。在Mafengwo、CAMRa2011和Weeplaces数据集上的实验结果表明,相较于基线模型ConsRec,GRGM模型的命中率(HR@5、HR@10)和归一化折损累计增益(NDCG@5、NDCG@10)在Mafengwo数据集上分别提升了3.38%、1.96%和3.67%、3.84%,在CAMRa2011数据集上分别提升了2.87%、1.18%和0.96%、1.62%,在Weeplaces数据集上分别提升了2.41%、1.69%和4.35%、2.60%。可见,GRGM模型相较于对比模型具有更好的推荐性能。 展开更多
关键词 群组推荐 神经网络 多视角学习 超图 隐式信息
在线阅读 下载PDF
Light-HGNN:用于圈层内容推荐的轻量同质超图神经网络 被引量:2
7
作者 李挺 金福生 +3 位作者 李荣华 王国仁 段焕中 路彦雄 《计算机研究与发展》 EI CSCD 北大核心 2024年第4期877-888,共12页
图神经网络和超图神经网络(hypergraph neural network,HGNN)已经成为协同过滤推荐领域的研究热点.然而实际场景中用户和项目的交互非常复杂,导致用户之间存在高阶的复杂关系,而普通图结构只能表达简单的成对关系,对网络结构的堆叠容易... 图神经网络和超图神经网络(hypergraph neural network,HGNN)已经成为协同过滤推荐领域的研究热点.然而实际场景中用户和项目的交互非常复杂,导致用户之间存在高阶的复杂关系,而普通图结构只能表达简单的成对关系,对网络结构的堆叠容易导致中间层表征的过度平滑,在稀疏场景下的用户建模、用户相似性发现与挖掘方面能力较弱;同时,异质超图神经网络的复杂结构使得模型的训练效率较低.在以微信“搜一搜”等内容平台为代表的高度稀疏数据场景中,对于基于用户所属群体画像的圈层内容推荐任务,现有模型推荐效果差、用户表示的可解释性弱.因此,针对该类任务,提出了一个新的轻量同质超图神经网络模型,该模型包含用户交互数据至超图的转化、卷积生成用户表征序列、用户表征计算过滤.模型首先将用户-项目交互数据转化为只含用户节点的同质超图并计算得到用户表征解耦序列初始值,随后根据超图拉普拉斯过滤矩阵进行信息传播与序列值的迭代生成,通过不使用激活层的卷积方法简化模型结构,并根据提出的均值差JK注意力机制为每个序列值生成权重矩阵.最终,通过对解耦序列加权求和、过滤实现对用户表示的编码,并在真实数据集上进行实验验证了所提模型的相对更优效果. 展开更多
关键词 同质超图 超图神经网络 个性化推荐 圈层内容推荐 推荐算法
在线阅读 下载PDF
超图神经网络综述 被引量:4
8
作者 林晶晶 冶忠林 +1 位作者 赵海兴 李卓然 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期362-384,共23页
近年来,图神经网络借助大量数据和超强计算能力在推荐系统和自然语言处理等应用领域取得显著成效,它主要处理具有成对关系的图数据.但许多现实网络中的对象之间的关系是复杂的非成对关系,如科研合作网络、蛋白质网络等.若直接用图结构... 近年来,图神经网络借助大量数据和超强计算能力在推荐系统和自然语言处理等应用领域取得显著成效,它主要处理具有成对关系的图数据.但许多现实网络中的对象之间的关系是复杂的非成对关系,如科研合作网络、蛋白质网络等.若直接用图结构将这种复杂的关系表示为成对关系,会导致信息丢失.超图是一种灵活的建模工具,可以展现出图无法完整刻画的高阶关系,弥补了图的不足.鉴于此,研究者开始关心如何在超图上设计神经网络,并相继提出应用于下游任务的超图神经网络模型(hypergraph neural network,HGNNs).故对现有的超图神经网络模型进行综述,首先全面回顾超图神经网络在过去3年的研究历程;其次根据设计超图神经网络采用的方法不同对其进行分类,并详细地阐述代表性的模型;然后介绍了超图神经网络的应用领域;最后总结和探讨了超图神经网络未来的研究方向. 展开更多
关键词 超图 超图神经网络 分类 神经网络
在线阅读 下载PDF
联合图随机游走和跳跃连接的动态超图神经网络
9
作者 牛雪琼 农丽萍 +2 位作者 梁海 王俊义 林基明 《计算机应用与软件》 北大核心 2024年第3期182-187,共6页
针对传统超图神经网络难以提取节点直接邻域外关联度高的节点特征,导致全局特征信息不完整的问题,对动态超图神经网络(DHGNN)进行改进,提出联合图随机游走和跳跃连接的动态超图神经网络(RWS-DHGNN),用于非欧几里得数据的分类。该网络在D... 针对传统超图神经网络难以提取节点直接邻域外关联度高的节点特征,导致全局特征信息不完整的问题,对动态超图神经网络(DHGNN)进行改进,提出联合图随机游走和跳跃连接的动态超图神经网络(RWS-DHGNN),用于非欧几里得数据的分类。该网络在DHGNN的基础上,引入了图随机游走,从而有效地获取直接邻域外关联度高的节点特征。同时,引入残差网络的思想在超图的顶点卷积处增加跳跃连接构成残差结构。所提网络模型充分发挥图结构和超图结构的优势。在Cora数据集的标准分割和随机分割上将所提网络与GCN、HGNN、GAT和DHGNN进行对比实验,实验结果表明,该模型可以有效提高分类准确率。 展开更多
关键词 超图神经网络 随机游走 跳跃连接 节点分类
在线阅读 下载PDF
一种基于层次超图注意力神经网络的服务推荐算法
10
作者 杨东昇 王桂玲 郑鑫 《计算机科学》 CSCD 北大核心 2024年第11期103-111,共9页
随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互... 随着Internet和Web上各种服务和API数量的迅速增加,开发人员要快速准确地找到满足其需求的API变得越来越具有挑战性,因此亟需一个高效的推荐系统。目前,将图神经网络应用于服务推荐领域取得了巨大成功,但大多数方法仍然局限于简单的交互,忽略了mashup和API调用之间的内在关系;为了解决这个问题,提出了一种基于层次超图注意力的服务推荐方法(H-HGSR)来进行API推荐。首先定义了8种类型的超边,并探究了对应类型超边的超图邻接矩阵生成方法,然后提出了节点级和超边级的注意力机制。节点级注意力机制用于聚合特定类型超图邻接矩阵下的不同邻居的重要信息,以捕获mashup和API之间的高阶关系;超边级注意力机制用于对从不同类型超图邻接矩阵生成的节点嵌入进行加权组合。通过学习节点级和超边级注意力的重要性,可以获得更准确的嵌入表示。最后使用一个多层感知器神经网络(MLP)进行服务推荐。在Programmable Web真实数据集上进行了大量实验,结果表明,所提H-HGSR框架优于目前最先进的服务推荐方法。 展开更多
关键词 服务推荐 超图 神经网络 注意力机制
在线阅读 下载PDF
注意力感知的边−节点交换图神经网络模型 被引量:2
11
作者 王瑞琴 黄熠旻 +2 位作者 纪其顺 万超艺 周志峰 《电信科学》 北大核心 2024年第1期106-114,共9页
提出了一种注意力感知的边-节点交换图神经网络(attention aware edge-node exchange graph neural network,AENN)模型,在图结构化数据表示框架下,使用边-节点切换卷积的图神经网络算法进行图编码,用于半监督分类和回归分析。AENN是一... 提出了一种注意力感知的边-节点交换图神经网络(attention aware edge-node exchange graph neural network,AENN)模型,在图结构化数据表示框架下,使用边-节点切换卷积的图神经网络算法进行图编码,用于半监督分类和回归分析。AENN是一种通用的图编码框架,用于将图节点和边嵌入一个统一的潜在特征空间。具体地,基于原始无向图,不断切换边与节点的卷积,并在卷积过程中通过注意力机制分配不同邻居的权重,从而实现特征传播。在3个数据集上的实验研究表明,所提方法较已有方法在半监督分类和回归分析中具有明显的性能提升。 展开更多
关键词 神经网络 消息传递 注意力机制 超图 边图
在线阅读 下载PDF
融合全局信息的多图神经网络会话推荐 被引量:1
12
作者 黄涛 徐贤 《小型微型计算机系统》 CSCD 北大核心 2024年第4期769-776,共8页
基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多... 基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多图神经网络会话推荐模型(GIMGNN)来增强会话推荐的效果.该模型首先通过超图卷积神经网络和门控图神经网络从全局会话超图和局部会话图中学习两个级别的物品表示,然后通过注意力机制将反向位置信息融合到两种表示中,最后利用融合后的表示完成预测.在两个真实数据集Yoochoose和Diginetica上进行了一系列实验,实验结果表明,对比性能最优的基准模型,GIMGNN模型在Yoochoose上P@20和MRR@20至少提升了2.42%和4.01%,在Diginetica上P@20和MRR@20至少提升了6.56%和9.11%,验证了模型的有效性. 展开更多
关键词 会话推荐 超图卷积神经网络 门控图神经网络 注意力机制 位置信息
在线阅读 下载PDF
基于超图卷积神经网络的多行为感知服务推荐方法 被引量:3
13
作者 陆佳炜 李端倪 +2 位作者 王策策 徐俊 肖刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第10期1977-1986,共10页
针对现有服务推荐方法中高阶服务特征提取不够充分的问题,提出基于超图卷积神经网络的多行为感知服务推荐方法(MBSRHGNN).该方法根据服务交互类型和服务组合信息构建多重超图,基于谱分解理论和多重超图的功能结构特性以设计双通道超图... 针对现有服务推荐方法中高阶服务特征提取不够充分的问题,提出基于超图卷积神经网络的多行为感知服务推荐方法(MBSRHGNN).该方法根据服务交互类型和服务组合信息构建多重超图,基于谱分解理论和多重超图的功能结构特性以设计双通道超图卷积网络.利用切比雪夫多项式近似超图卷积核来降低计算复杂度;在超图卷积过程中,结合多行为推荐方法和自注意力机制度量多行为交互之间的重要性差异,提出HG-DiffPool超图池化方法来降低特征维度;通过融合服务嵌入向量和超图信号,学习不同服务的推荐概率分布;爬取真实服务数据,构造不同稀疏度的数据集进行实验.实验结果表明,所提的MBSRHGNN服务推荐方法能够适应数据高度稀疏的推荐场景,并且在推荐精确度和相关性上的表现优于现有基线方法. 展开更多
关键词 服务推荐 神经网络 超图学习 多行为推荐 注意力机制
在线阅读 下载PDF
基于时序超图卷积神经网络的股票趋势预测方法 被引量:11
14
作者 李晓杰 崔超然 +3 位作者 宋广乐 苏雅茜 吴天泽 张春云 《计算机应用》 CSCD 北大核心 2022年第3期797-803,共7页
传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事... 传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事实构造超图模型以拟合股票之间的多元关系,该模型包括两大组件:门控循环单元(GRU)网络和超图卷积神经网络。GRU网络对历史数据进行时间序列建模,捕捉长期依赖关系;HGCN建模股票间的高阶关系以学习内在关系属性,从而将股票间多元关系信息引入到传统的时序建模中,进行端到端的趋势预测。在中国A股市场真实数据集上的实验结果表明,相较于已有的股票预测方法,所提模型预测性能有所提升;如与GRU网络相比,所提模型在ACC和F1_score上的相对增幅分别为9.74%和8.13%,且更具有稳定性。此外,模拟回测结果显示,基于该模型的交易策略更具获利能力,年回报率达到11.30%,与长短期记忆(LSTM)网络相比提高了5个百分点。 展开更多
关键词 股票趋势预测 时间序列建模 门控循环单元 高阶关系 超图卷积神经网络
在线阅读 下载PDF
基于多超图融合的超图神经网络模型构建及阿尔茨海默病分类 被引量:1
15
作者 曹鹏杰 李瑶 +3 位作者 宿亚静 李埼钒 相洁 郭浩 《科学技术与工程》 北大核心 2023年第19期8296-8307,共12页
针对目前超图神经网络构建方法单一化,导致被试特征间的交互信息无法表征,从而影响超图神经网络模型分类性能的问题。提出一种多超图融合技术,融合多个超图为一个超图,从而互补多个超图各自所表征的高阶特征,以此来提高超图神经网络模... 针对目前超图神经网络构建方法单一化,导致被试特征间的交互信息无法表征,从而影响超图神经网络模型分类性能的问题。提出一种多超图融合技术,融合多个超图为一个超图,从而互补多个超图各自所表征的高阶特征,以此来提高超图神经网络模型的分类性能。具体来说,基于结构磁共振成像数据,使用基于稀疏表示的最小绝对收缩和选择算法(least absolute shrinkage and selection operator,LASSO)方法,稀疏组LASSO方法以及覆盖组LASSO方法进行超图构建,然后分别基于超图融合技术将三个单一超图进行融合。接着基于融合的超图,构建超图神经网络模型,最终用于阿尔兹海默症及轻度认知障碍的分类。实验结果表明,本文所提方法的分类准确率达到79.21%,证明了该方法在阿尔兹海默症及轻度认知障碍的分类有较高的准确性和泛化性。 展开更多
关键词 超图神经网络 稀疏表示 分类 超图融合 阿尔兹海默症 结构磁共振成像
在线阅读 下载PDF
图神经网络在复杂图挖掘上的研究进展 被引量:19
16
作者 刘杰 尚学群 +1 位作者 宋凌云 谭亚聪 《软件学报》 EI CSCD 北大核心 2022年第10期3582-3618,共37页
图神经网络对非欧式空间数据建立了深度学习框架,相比传统网络表示学习模型,它对图结构能够实施更加深层的信息聚合操作.近年来,图神经网络完成了向复杂图结构的迁移,诞生了一系列基于复杂图的图神经网络模型.然而,现有综述文章缺乏对... 图神经网络对非欧式空间数据建立了深度学习框架,相比传统网络表示学习模型,它对图结构能够实施更加深层的信息聚合操作.近年来,图神经网络完成了向复杂图结构的迁移,诞生了一系列基于复杂图的图神经网络模型.然而,现有综述文章缺乏对复杂图神经网络全面、系统的归纳和总结工作.将复杂图分为异质图、动态图和超图3种类型.将异质图神经网络按照信息聚合方式划分为关系类型感知和元路径感知两大类,在此基础上,分别介绍普通异质图和知识图谱.将动态图神经网络按照处理时序信息的方式划分成基于循环神经网络、基于自编码器以及时空图神经网络三大类.将超图神经网络按照是否将超图展开成成对图划分为展开型和非展开型两大类,进一步按照展开方式将展开型划分成星形展开、团式展开和线形展开3种类型.详细阐述了每种算法的核心思想,比较了不同算法间的优缺点,系统列举了各类复杂图神经网络的关键算法、(交叉)应用领域和常用数据集,并对未来可能的研究方向进行了展望. 展开更多
关键词 神经网络 复杂图 异质图 动态图 超图
在线阅读 下载PDF
基于PageRank传播机制的超图神经网络
17
作者 刘彦北 周敬涛 《天津工业大学学报》 CAS 北大核心 2023年第2期67-73,共7页
针对传统超图神经网络卷积过程中层数过深过拟合以及传播范围小的问题,将超图神经网络(HGNN)与网页排名机制PageRank相结合,并利用个性化的改进传播方案,构建了基于PageRank传播机制的超图神经网络(HGNNP),在扩大学习领域的同时保持对... 针对传统超图神经网络卷积过程中层数过深过拟合以及传播范围小的问题,将超图神经网络(HGNN)与网页排名机制PageRank相结合,并利用个性化的改进传播方案,构建了基于PageRank传播机制的超图神经网络(HGNNP),在扩大学习领域的同时保持对根节点信息的有效关注,邻域范围扩大且可调节。在ModelNet40数据集和NTU数据集上对HGNNP的分类效果进行了验证。结果表明:HGNNP在ModelNet40数据集和NTU数据集上的最高分类准确率分别达到了93.07%和85.79%,相比HGNN分别提高了0.47%和8.59%,分类效果更好,且克服了过平滑问题;而且,随网络层数加深HGNNP的分类效果趋于稳定。 展开更多
关键词 超图 超图神经网络 网页排名机制 半监督分类
在线阅读 下载PDF
基于谱域超图卷积网络的交通流预测模型 被引量:5
18
作者 尹宝才 王竟成 +2 位作者 张勇 胡永利 孙艳丰 《北京工业大学学报》 CAS CSCD 北大核心 2024年第2期152-164,共13页
针对传统图结构难以对节点间的隐含复杂关联关系建模的问题,利用超图对交通流数据进行高阶表示,提出基于谱域超图卷积网络的交通流预测方法。首先,通过动态超边刻画数据特征层面的关系,利用谱域超图卷积,包括基于傅里叶和图小波的超图... 针对传统图结构难以对节点间的隐含复杂关联关系建模的问题,利用超图对交通流数据进行高阶表示,提出基于谱域超图卷积网络的交通流预测方法。首先,通过动态超边刻画数据特征层面的关系,利用谱域超图卷积,包括基于傅里叶和图小波的超图卷积及门控时序卷积,在多尺度上提取交通流的时空特征,实现端到端的节点级交通流预测。然后,采用北京市以及美国加利福尼亚州真实历史数据集进行预测实验。消融实验通过孤立和重构网络模型验证了所提方法的有效性。全时段和早高峰交通流预测的实验结果表明,该方法预测准确率高于目前主流交通流预测模型。 展开更多
关键词 神经网络 超图理论 多元时序预测 深度学习 大数据分析 智慧交通
在线阅读 下载PDF
基于超图卷积和多角度拓扑细化的骨骼行为识别方法
19
作者 黄倩 苏新凯 +1 位作者 李畅 巫义锐 《计算机科学》 北大核心 2025年第5期220-226,共7页
由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空... 由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空间拓扑随时间的动态变化。这些不足影响了模型的表现。为此,利用K-NN计算出相关性高的关节点构成超边,提出了超图构建方法和超边图卷积来动态地学习关节点间的高阶关系。此外,设计了一个从时间和通道角度细化的拓扑图来学习帧级的和通道级的关节点对之间的相关性。最后,开发了一个多角度拓扑细化的超图卷积网络(HyperMTR-GCN)用于骨骼行为识别,其在NTU RGB+D和NTU RGB+D 120数据集上具有显著优势。具体地,所提方法在NTU RGB+D的X-sub基准上比2s-AGCN提高了3.7%,在NTU RGB+D 120的X-sub基准上比2s-AGCN提高了5.7%。 展开更多
关键词 行为识别 图卷积网络 超图神经网络 骨架建模 拓扑细化
在线阅读 下载PDF
基于重要性采样的超图网络高效表示方法 被引量:1
20
作者 邵豪 王伦文 +1 位作者 朱然刚 刘辉 《软件学报》 EI CSCD 北大核心 2024年第9期4390-4407,共18页
现有的超图网络表示方法需要分析全批量节点和超边以实现跨层递归扩展邻域,这会带来巨大的计算开销,且因过度扩展导致更低的泛化精度.为解决这一问题,提出一种基于重要性采样的超图表示方法.首先,它将节点和超边看作是两组符合特定概率... 现有的超图网络表示方法需要分析全批量节点和超边以实现跨层递归扩展邻域,这会带来巨大的计算开销,且因过度扩展导致更低的泛化精度.为解决这一问题,提出一种基于重要性采样的超图表示方法.首先,它将节点和超边看作是两组符合特定概率测度的独立同分布样本,用积分形式解释超图的结构特征交互;其次,设计带可学习参数的邻域重要性采样规则,根据节点和超边的物理关系和特征计算采样概率,逐层递归采集固定数目的对象,构造一个更小的采样邻接矩阵;最终,利用蒙特卡洛方法近似估计整个超图的空间特征.此外,借鉴PINN的优势,将需要缩减的方差作为物理约束加入到超图神经网络中,以获取更具泛化能力的采样规则.多个数据集上的广泛实验表明,所提出的方法能够获得更准确的超图表示结果,同时具有更快的收敛速度. 展开更多
关键词 复杂网络 超图表示学习 重要性采样 蒙特卡洛估计 物理信息神经网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部