期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于动态人群超图卷积网络的自闭症诊断方法
1
作者 王国华 王丽芳 +2 位作者 薛小红 王千山 李海芳 《计算机应用研究》 北大核心 2025年第5期1356-1362,共7页
近年来图神经网络已被广泛应用于自闭症辅助诊断,现有研究大多采用手工计算的方式构建被试间相似图以实现诊断,难以准确建模被试间的复杂关系。此外,多数方法还忽略了对脑区自身特性的利用。为解决以上问题,提出了一种结合功能连接和动... 近年来图神经网络已被广泛应用于自闭症辅助诊断,现有研究大多采用手工计算的方式构建被试间相似图以实现诊断,难以准确建模被试间的复杂关系。此外,多数方法还忽略了对脑区自身特性的利用。为解决以上问题,提出了一种结合功能连接和动态低频波动振幅两种特征的动态人群超图卷积自闭症诊断方法DPHCN。采用多角度超图构建结合动态超图卷积实现自闭症诊断,在包含17个站点的公开数据集ABIDE-I上对所提方法进行了评估,达到了患者和正常被试间87.4%的分类准确率,优于许多现有方法。此外,还在ADHD-200数据集上进行了实验,并利用基于梯度的显著图法识别了对分类重要的大脑功能连接,结果表明所提方法有良好的泛化性和挖掘潜在生物标志物的能力。 展开更多
关键词 自闭症诊断 动态超图卷积网络 功能磁共振成像 动态低频波动振幅
在线阅读 下载PDF
基于超图卷积网络的重复性消费会话推荐算法
2
作者 潘茂 张梦菲 +4 位作者 辛增卫 金佳琪 陈娟 方金云 刘晓东 《高技术通讯》 CAS 2023年第5期497-510,共14页
针对基于会话的推荐算法(SBRS)在建模会话表示时,缺乏考虑会话中物品之间多元关联关系和用户重复性消费的行为模式,提出一种基于超图卷积网络的重复性消费会话推荐算法。算法首先根据用户的会话序列组建超图和线图,并通过超图卷积网络... 针对基于会话的推荐算法(SBRS)在建模会话表示时,缺乏考虑会话中物品之间多元关联关系和用户重复性消费的行为模式,提出一种基于超图卷积网络的重复性消费会话推荐算法。算法首先根据用户的会话序列组建超图和线图,并通过超图卷积网络建模会话内物品之间多元关联关系和会话间交叉信息;接着通过注意力网络生成用户的意图表示;然后构建重复—探索模块以建模用户重复消费的行为模式;最后根据生成的会话表示预测下一个产生交互的物品评分,进行推荐。在2个公开的现实数据集上的大量实验结果表明,所提模型在召回率和平均倒数排名指标上优于其他基线算法。 展开更多
关键词 会话推荐 超图卷积网络 行为模式 重复性消费 交叉信息
在线阅读 下载PDF
基于项目级和类别级双混合超图的会话推荐
3
作者 李建伏 张丹 《计算机工程与设计》 北大核心 2025年第6期1758-1765,共8页
为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节... 为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节点的表示;引入引导注意力机制融合两种节点表示;用更新后的节点嵌入学习会话表示,计算每个节点的点击概率并推荐概率最大的k个项目。实验结果表明,DF-MHCN方法相对于现有的会话推荐方法具有较高的精度。 展开更多
关键词 基于会话的推荐 混合超图 项目级混合超图 类别级混合超图 超图卷积网络 混合超图卷积网络 引导注意力机制
在线阅读 下载PDF
面向多中心数据的超图卷积神经网络及应用 被引量:6
4
作者 周海榆 张道强 《计算机科学》 CSCD 北大核心 2022年第3期129-133,共5页
近年来,图神经网络在神经性脑疾病诊断中的应用引起了广泛关注。然而,现有研究中使用的图通常只是基于简单的点对点连接,无法反映3个或更多受试者之间的复杂关联,尤其是在多中心数据集中,即由不同医疗机构所使用的不同采集设备和不同受... 近年来,图神经网络在神经性脑疾病诊断中的应用引起了广泛关注。然而,现有研究中使用的图通常只是基于简单的点对点连接,无法反映3个或更多受试者之间的复杂关联,尤其是在多中心数据集中,即由不同医疗机构所使用的不同采集设备和不同受试人群而集成的具有异质性的数据集。为解决医疗影像数据中存在的多中心异质性问题,提出了一种多中心超图数据结构来描述多中心数据之间的关系。这种超图由两种不同的超边构成,一种是描述单个中心内部关系的中心内超边,另一种是描述不同中心之间关系的跨中心超边。另外,还提出了一种超图卷积神经网络来学习节点的特征表示,这种超图卷积由两部分构成,第一部分是超图节点卷积,第二部分是超边卷积。在两个多中心数据集上的实验结果证明了所提方法的有效性。 展开更多
关键词 多中心数据 数据异质性 脑疾病诊断 卷积网络 超图卷积网络
在线阅读 下载PDF
行为模式时空动态超图聚类的公共交通异常团体检测
5
作者 赵霞 李之红 +3 位作者 刘剑锋 杨静 吴梦琳 秦伊萌 《交通运输系统工程与信息》 北大核心 2025年第3期132-141,共10页
针对现有异常团体检测研究忽略刻画个体隐行为模式、邻域团体隐行为模式以及行为模式时序变化特性的现状,本文提出一个时空动态超图聚类(Spatio-temporal Dynamic Hypergraph Clustering, STDHC)模型。先提取个体在连续时间切片的出行... 针对现有异常团体检测研究忽略刻画个体隐行为模式、邻域团体隐行为模式以及行为模式时序变化特性的现状,本文提出一个时空动态超图聚类(Spatio-temporal Dynamic Hypergraph Clustering, STDHC)模型。先提取个体在连续时间切片的出行特征矩阵序列,对应构建行为模式超图序列,刻画各时段下多个体的高阶关联特性;由此运用Transformer,从时间维度学习个体显性出行特征背后的隐行为模式;运用超图卷积网络,从空间维度学习邻域团体的隐行为模式;度量双向时间传播作用下的超图拓扑结构变化值,从时间变化维度捕捉个体行为模式的时序变化特性;利用注意力机制融合上述3类特征,更新超图卷积网络,实现团体的自动检测。将本文提出模型应用于公共交通扒窃团体的检测案例,通过系列对比、消融和鲁棒分析实验,证实能在连续时间步长下取得高于6种基线模型2%~6%的提升性能。研究成果可为智能检测公共交通场所异常团体和提升安全运营水平提供理论支撑。 展开更多
关键词 智能交通 异常检测 深度学习 行为模式 超图卷积网络
在线阅读 下载PDF
基于时序超图卷积神经网络的股票趋势预测方法 被引量:11
6
作者 李晓杰 崔超然 +3 位作者 宋广乐 苏雅茜 吴天泽 张春云 《计算机应用》 CSCD 北大核心 2022年第3期797-803,共7页
传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事... 传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事实构造超图模型以拟合股票之间的多元关系,该模型包括两大组件:门控循环单元(GRU)网络和超图卷积神经网络。GRU网络对历史数据进行时间序列建模,捕捉长期依赖关系;HGCN建模股票间的高阶关系以学习内在关系属性,从而将股票间多元关系信息引入到传统的时序建模中,进行端到端的趋势预测。在中国A股市场真实数据集上的实验结果表明,相较于已有的股票预测方法,所提模型预测性能有所提升;如与GRU网络相比,所提模型在ACC和F1_score上的相对增幅分别为9.74%和8.13%,且更具有稳定性。此外,模拟回测结果显示,基于该模型的交易策略更具获利能力,年回报率达到11.30%,与长短期记忆(LSTM)网络相比提高了5个百分点。 展开更多
关键词 股票趋势预测 时间序列建模 门控循环单元 高阶关系 超图卷积神经网络
在线阅读 下载PDF
基于改进双动态时空图网络的航班延误预测模型
7
作者 魏明 徐子清 孙博 《计算机应用研究》 北大核心 2025年第2期365-370,共6页
针对现有航班延误预测模型中仅考虑机场之间空间拓扑结构的缺陷,提出一种基于多图信息融合的改进双动态时空图卷积网络航班延误预测模型。首先,根据航班延误传播的不同空间相关性,构建基于机场和航路的四种空间邻接矩阵,并进行多图融合... 针对现有航班延误预测模型中仅考虑机场之间空间拓扑结构的缺陷,提出一种基于多图信息融合的改进双动态时空图卷积网络航班延误预测模型。首先,根据航班延误传播的不同空间相关性,构建基于机场和航路的四种空间邻接矩阵,并进行多图融合提供更加全面空间特征信息;其次,将多图结构转换成超图刻画航班延误航线之间的空间相关性,利用门控时间卷积提取其时间序列相关性,利用超图卷积提取其空间相关性,并设计两种特征增强模块进一步避免部分点和边空间特征信息丢失现象。最后,以美国2009—2019年的50个机场之间航班延误预测为例,将本模型与五个主流基线模型进行对比,完成了消融实验。实验结果表明,相较于其他基线模型,该改进模型能够更好地在该问题上拟合实际情况。 展开更多
关键词 航空运输 航班延误预测 卷积神经网络 超图卷积神经网络 多图信息融合
在线阅读 下载PDF
社交参与视角下超图增强的学习趣缘社群群体检测研究
8
作者 李贺 刘嘉宇 +2 位作者 沈旺 时倩如 解梦凡 《情报学报》 CSSCI CSCD 北大核心 2024年第12期1425-1439,共15页
在线学习群体检测是在新一轮科技革命赋能教育创新变革背景下,依据学习者个性化特征优化教育资源分层配置的关键途径。现有学习趣缘社群在线学习群体的检测主要依赖学习者的直接行为记录和互动指标,较少关注学习者潜在的社交参与水平和... 在线学习群体检测是在新一轮科技革命赋能教育创新变革背景下,依据学习者个性化特征优化教育资源分层配置的关键途径。现有学习趣缘社群在线学习群体的检测主要依赖学习者的直接行为记录和互动指标,较少关注学习者潜在的社交参与水平和社群结构。为营造数智环境下学习者画像决策辅助全民自主学习的文化氛围,本文提出一种社交参与视角下超图增强的学习趣缘社群群体检测方法。首先,从影响用户社交参与的维度出发,构建能够体现学习者社交参与水平的特征集。其次,提出超图卷积网络(hypergraph convolutional network,HyperGCN)增强的图聚类算法HG-SDCN(structural deep clustering network based on HyperGCN),解决了利用二分图检测在线学习群体时无法有效捕捉学习者多元交互关系和高阶结构的问题。最后,从真实学习趣缘社群收集数据,验证本文提出方法的检测效果。与基线相比,本文方法在Acc(accuracy)、F1、NMI(normalized mutual information)和ARI(adjusted Rand index)等评价指标上分别提升了16.16、9.77、16.01和22.14个百分点。上述结果不仅证明了HyperGCN在捕捉学习者高阶结构实现在线学习群体检测任务中的有效性,还为未来从社交参与维度制定调整个性化教育资源配置策略提供了方法和理论支撑。 展开更多
关键词 群体检测 高阶结构 社交参与 超图卷积网络 学习趣缘社群 个性化学习
在线阅读 下载PDF
基于关系超图增强Transformer的智能站二次设备故障诊断研究 被引量:15
9
作者 周海成 石恒初 +2 位作者 曾令森 王飞 欧阳勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第12期123-132,共10页
随着智能变电站二次设备的状态感知与自描述能力不断提升,在提高电网调控细粒度的同时,其海量、驳杂、离散的状态信息也使故障诊断难度倍增。为提高二次设备故障诊断精度与效率,提出基于关系超图增强Transformer的二次设备故障诊断算法... 随着智能变电站二次设备的状态感知与自描述能力不断提升,在提高电网调控细粒度的同时,其海量、驳杂、离散的状态信息也使故障诊断难度倍增。为提高二次设备故障诊断精度与效率,提出基于关系超图增强Transformer的二次设备故障诊断算法。首先利用Apriori算法挖掘故障信号间的关联规则,构建关系超图。然后利用超图卷积神经网络(hypergraph convolutional neural network,HGCN)和微调标准Transformer网络学习故障特征间的高阶关系和上下文表达,再经过误差反向传播、非线性传递函数预测故障类型。最后,以某地区一年的二次设备运行数据作为算例进行分析。结果表明,所提方法能够去除冗余信息干扰,准确定位故障元件和诊断故障类型,为智能运维提供支持。 展开更多
关键词 关系超图 超图卷积神经网络 TRANSFORMER 故障预测 二次设备 设备关联模型
在线阅读 下载PDF
融合全局信息的多图神经网络会话推荐 被引量:1
10
作者 黄涛 徐贤 《小型微型计算机系统》 CSCD 北大核心 2024年第4期769-776,共8页
基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多... 基于会话的推荐旨在根据当前会话预测下一个最可能交互的物品.由于单个会话点击序列较短,仅使用会话本身的信息很难提供准确的推荐.因此,综合考虑其它会话之间的交互信息已成为一种趋势,为了提高推荐性能,本文提出一种融合全局信息的多图神经网络会话推荐模型(GIMGNN)来增强会话推荐的效果.该模型首先通过超图卷积神经网络和门控图神经网络从全局会话超图和局部会话图中学习两个级别的物品表示,然后通过注意力机制将反向位置信息融合到两种表示中,最后利用融合后的表示完成预测.在两个真实数据集Yoochoose和Diginetica上进行了一系列实验,实验结果表明,对比性能最优的基准模型,GIMGNN模型在Yoochoose上P@20和MRR@20至少提升了2.42%和4.01%,在Diginetica上P@20和MRR@20至少提升了6.56%和9.11%,验证了模型的有效性. 展开更多
关键词 会话推荐 超图卷积神经网络 门控图神经网络 注意力机制 位置信息
在线阅读 下载PDF
融合地理和时空信息的对比兴趣点推荐方法 被引量:1
11
作者 闵昭浩 张䶮 《计算机工程与设计》 北大核心 2025年第2期368-375,共8页
针对兴趣点推荐中无法精准捕捉POI之间地理影响和高效学习用户-兴趣点(POI)交互行为动态表示的问题,提出一种融合地理和时空信息的对比兴趣点推荐方法(IGST-CL)。采用地理插值采样策略来缓解数据不平衡问题,利用一种动态消息传播机制的... 针对兴趣点推荐中无法精准捕捉POI之间地理影响和高效学习用户-兴趣点(POI)交互行为动态表示的问题,提出一种融合地理和时空信息的对比兴趣点推荐方法(IGST-CL)。采用地理插值采样策略来缓解数据不平衡问题,利用一种动态消息传播机制的图卷积网络精准捕获地理影响。采用一种基于正余弦时间函数的时间注意力机制和超图网络联合学习用户-POI交互行为的动态表示。采用对比学习策略进一步增强模型性能。基于多任务学习方法自适应融合上述3个任务推断用户偏好。基于多个基准数据集的实验分析验证了IGST-CL模型相比其它主流兴趣点算法的优越性。 展开更多
关键词 兴趣点 超图卷积网络 时间注意力 消息传播 数据不平衡 正余弦函数 对比学习
在线阅读 下载PDF
面向知识场景的图片类教育资源知识点自动标注算法 被引量:1
12
作者 王静 杜旭 +1 位作者 李浩 胡壮 《计算机工程与应用》 CSCD 北大核心 2024年第24期119-130,共12页
针对图片资源的视觉特征与高级知识语义不一致的挑战,提出一种新的知识点自动标注算法,称为基于知识场景的情境超图卷积网络(SHGCN),以便高效组织管理教育领域中的图片数据,促进知识理解与有效利用,实现教育智能化。该算法在提取图片资... 针对图片资源的视觉特征与高级知识语义不一致的挑战,提出一种新的知识点自动标注算法,称为基于知识场景的情境超图卷积网络(SHGCN),以便高效组织管理教育领域中的图片数据,促进知识理解与有效利用,实现教育智能化。该算法在提取图片资源显性视觉特征的同时,又挖掘了隐含在细粒度区域的隐性知识信息。利用Faster R-CNN和OCR技术来识别知识对象和坐标文本等知识实体,这些知识实体特征融合后作为该图片的知识向量;提出双筛选机制来生成不同类型的知识场景,并将知识场景作为超边来构建情境超图,建模蕴含相似情境信息的图片间高阶知识相关性。利用超图卷积实现知识相似图片的情境信息聚合,实现“视觉-语义”到“视觉-语义-知识”的转化。还构建了一个物理学科的图片数据集来训练和验证SHGCN。实验结果表明,SHGCN在提取图片显性视觉信息的基础上,进一步挖掘隐性知识信息,其性能优于基线方法。 展开更多
关键词 知识点标注 超图卷积网络 知识场景 情境超图
在线阅读 下载PDF
兼顾个性特征和融合特征的阿尔茨海默病分类
13
作者 曹营利 邓赵红 +1 位作者 胡曙东 王士同 《计算机科学与探索》 CSCD 北大核心 2023年第7期1658-1668,共11页
智能诊断在阿尔茨海默病(AD)的诊断中已得到广泛研究,但已有的智能建模方法还不能充分利用多模态的数据信息,以至于在病程早期阶段的诊断中出现识别精确度不高的问题。为提高阿尔茨海默病及其早期阶段智能诊断的效果,提出一种兼顾个性... 智能诊断在阿尔茨海默病(AD)的诊断中已得到广泛研究,但已有的智能建模方法还不能充分利用多模态的数据信息,以至于在病程早期阶段的诊断中出现识别精确度不高的问题。为提高阿尔茨海默病及其早期阶段智能诊断的效果,提出一种兼顾个性特征和融合特征的阿尔茨海默病分类方法。首先使用超图卷积网络(HGCN)对MRI、PET和CSF三个模态的数据分别进行特征提取,以获得每个模态的高阶深度特征。同时通过低秩多模态融合对这三个模态的数据进行特征融合,以获得多个模态之间的隐藏关联特征。最后通过一个多视角分类器对以上获取的特征进行综合分类。利用ADNI数据集对阿尔茨海默病进行多组任务分类,以验证所提方法。与其他先进方法相比,该方法在保证AD阶段分类效果的情况下,有效提高了病程早期阶段的分类精度。 展开更多
关键词 多模态 超图卷积网络(HGCN) 低秩多模态融合 多视角分类 阿尔茨海默病(AD)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部