期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测 被引量:2
1
作者 刘凡 李捍东 覃涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期151-158,共8页
为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解... 为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解(CEEMDAN)对原始风电功率进行分解,构成训练数据集。其次,使用深度残差级联(DRnet)构建多层的时间卷积网络(TCN),并使用AsyHyperband算法对序列分量模型进行超参数寻优。最后,对序列分量分别进行预测,重构预测结果得到预测值。实验表明,该文提出的方法相比于其他方法能有效降低风电功率预测误差。 展开更多
关键词 风电功率 预测 神经网络 多层 集成经验模态分解 超参数搜索
在线阅读 下载PDF
基于优化随机森林算法预测食品检验不合格指标 被引量:4
2
作者 刘玉航 曲媛 +2 位作者 蒋嘉铭 宗万里 朱习军 《食品安全质量检测学报》 CAS 北大核心 2021年第18期7467-7472,共6页
目的建立基于优化的随机森林算法模型实现对食品不合格指标的分类预测。方法通过收集山东省食品药品监督管理局2015—2019年食品安全抽样检验产生的不合格数据,并对其进行多项数据预处理操作,采用超参数网格搜索和10折交叉验证方法建立... 目的建立基于优化的随机森林算法模型实现对食品不合格指标的分类预测。方法通过收集山东省食品药品监督管理局2015—2019年食品安全抽样检验产生的不合格数据,并对其进行多项数据预处理操作,采用超参数网格搜索和10折交叉验证方法建立基于随机森林的食品不合格指标的分类预测模型,并通过对传统随机森林模型的参数优化,将其与决策树(decision tree, DT)、逻辑回归(logistic regression, LR)和梯度提升决策树(gradient boosting decision tree, GBDT)算法分类预测结果进行对比。结果实验表明经过参数优化后的随机森林模型对食品中不合格指标的预测准确率能够达到89.4%,比DT算法提高了11.0%,比LR算法提高了9.0%,比GBDT算法提高了8.1%。结论基于优化的随机森林模型可以完成食品不合格指标分类预测任务,有广阔的应用前景。 展开更多
关键词 食品安全数据 决策树 随机森林 参数优化 参数网格搜索
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部