期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于滚动交叉验证的城市需水预测方法 被引量:1
1
作者 董增川 王佳晟 +4 位作者 崔璨 韩亚雷 陈荣豪 杨家亮 王淑云 《水资源保护》 北大核心 2025年第3期13-19,共7页
为提高机器学习算法在城市需水预测中的精度,提出了一种基于滚动交叉验证的系统化预测方法,包括影响因子指标体系构建、需水预测模型构建、结合滚动交叉验证的超参数优化以及模型性能的评估与优选,并以衡阳市为实例进行了方法验证。结... 为提高机器学习算法在城市需水预测中的精度,提出了一种基于滚动交叉验证的系统化预测方法,包括影响因子指标体系构建、需水预测模型构建、结合滚动交叉验证的超参数优化以及模型性能的评估与优选,并以衡阳市为实例进行了方法验证。结果表明:预测的2025年衡阳市需水量与规划值具有较高的一致性,验证了该方法的适用性和实际应用价值;该方法具有较强的普适性,可根据不同区域的经济社会发展趋势及用水结构灵活调整指标体系和模型组合,结合滚动交叉验证的超参数优化显著提高了模型的泛化能力和预测精度,更好地满足了真实应用场景的需水预测需求。 展开更多
关键词 城市需水预测 机器学习算法 超参数优化算法 滚动交叉验证 需水预测模型 衡阳市
在线阅读 下载PDF
基于集成学习的压电陶瓷烧结过程质量预测建模 被引量:2
2
作者 马超 翁智逸 何非 《计算机集成制造系统》 北大核心 2025年第1期147-157,共11页
烧结工艺是影响压电陶瓷成品质量的关键工艺,涉及影响因素众多,具有非线性、滞后性的特点,导致烧成品的质量难以保证。针对这一难题,通过分析烧结过程中陶瓷微观结构的变化,提出平均晶粒尺寸和烧成密度两个间接质量指标,并与压电性能指... 烧结工艺是影响压电陶瓷成品质量的关键工艺,涉及影响因素众多,具有非线性、滞后性的特点,导致烧成品的质量难以保证。针对这一难题,通过分析烧结过程中陶瓷微观结构的变化,提出平均晶粒尺寸和烧成密度两个间接质量指标,并与压电性能指标间的关系进行分析,建立质量预测模型,实现对烧结工艺的质量预测及控制。通过采取集成学习CatBoost算法,并结合贝叶斯超频带(BOHB)超参数优化算法,以五折交叉验证的方式建立了BOHB-CatBoost质量预测模型。最后,结合RMSE和R^(2)两个指标评估模型的性能,并与其他预测模型进行对比,验证了该模型具有更高的预测精度以及稳健性,对压电陶瓷的烧结生产过程具有较好的指导意义。 展开更多
关键词 压电陶瓷 质量预测 贝叶斯频带超参数优化算法 CatBoost算法
在线阅读 下载PDF
基于长序列的航空发动机剩余使用寿命预测方法 被引量:5
3
作者 郭俊锋 刘国华 刘国伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第3期774-784,共11页
针对多传感器长序列数据下航空发动机剩余使用寿命预测方法存在预测准确度不足的问题,提出一种基于堆叠膨胀卷积神经网络(SDCNN)的航空发动机剩余使用寿命预测方法。将多传感器长序列数据归一化处理,降低因量纲和取值范围不同引起的误差... 针对多传感器长序列数据下航空发动机剩余使用寿命预测方法存在预测准确度不足的问题,提出一种基于堆叠膨胀卷积神经网络(SDCNN)的航空发动机剩余使用寿命预测方法。将多传感器长序列数据归一化处理,降低因量纲和取值范围不同引起的误差;构建预测目标函数表征航空发动机的真实退化情况;搭建基于SDCNN的预测模型,扩大模型感受野,提取数据中的长期、深层和全局时序特征用于回归分析,得到航空发动机的剩余使用寿命预测结果;采用Hyperband优化算法和StratifiedKFold交叉验证方法优化模型,提升模型预测准确度和不同条件下的适应性,并采用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提方法的有效性。在C-MAPSS中FD003数据集上的实验结果表明:所提方法可有效提高基于长序列的航空发动机剩余使用寿命预测准确度,模型预测准确度得分指标明显降低32.62%。 展开更多
关键词 堆叠膨胀卷积 剩余使用寿命预测 Hyperband超参数优化算法 航空发动机 长序列信号
在线阅读 下载PDF
基于词嵌入与卷积神经网络的建筑能耗预测 被引量:10
4
作者 季天瑶 王挺韶 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期40-48,共9页
在对建筑能耗进行回归预测时需要利用到时序特征与分类特征,而传统模型只能处理其中一种特征。针对该问题,文中提出了一种融合一维卷积与词嵌入的神经网络新构架,其中,一维卷积核能提取连续的时间序列特征,词嵌入模型能对离散的分类特... 在对建筑能耗进行回归预测时需要利用到时序特征与分类特征,而传统模型只能处理其中一种特征。针对该问题,文中提出了一种融合一维卷积与词嵌入的神经网络新构架,其中,一维卷积核能提取连续的时间序列特征,词嵌入模型能对离散的分类特征进行嵌入计算,从而建立能同时处理时序特征与分类特征的建筑能耗预测模型。通过与梯度提升决策回归树和长短时记忆网络的比较,证明所提出的模型在效率与准确率上都有良好的表现。在超参数调节上,采用基于贝叶斯优化的超参数自动优化算法,该算法能在树搜索空间上寻找最优超参数,相比于人工调参,超参数自动寻优算法能在较快的时间内提升模型本身的性能。最后进行了算例仿真,结果表明,文中提出的模型在性能上要优于集成学习模型与长短时记忆网络。 展开更多
关键词 建筑能耗预测 一维卷积网络 词嵌入模型 梯度提升决策回归树 长短时记忆网络 贝叶斯优化 参数自动优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部