期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度自适应注意力的图像超分辨率网络 被引量:3
1
作者 周颖 裴盛虎 +1 位作者 陈海永 许士博 《光学精密工程》 EI CAS CSCD 北大核心 2024年第6期843-856,共14页
针对大多数图像超分辨率重建方法利用单尺度卷积进行特征提取,导致特征提取不充分的问题,提出基于多尺度自适应注意力的图像超分辨率网络。为充分利用各个层次特征中的上下文信息,设计了多尺度特征融合块,其基本单元由自适应双尺度块、... 针对大多数图像超分辨率重建方法利用单尺度卷积进行特征提取,导致特征提取不充分的问题,提出基于多尺度自适应注意力的图像超分辨率网络。为充分利用各个层次特征中的上下文信息,设计了多尺度特征融合块,其基本单元由自适应双尺度块、多路径渐进式交互块和自适应双维度注意力依次串联组成。首先,自适应双尺度块自主融合两个尺度的特征,获得了更丰富的上下文特征;其次,多路径渐进式交互块以渐进的方式交互自适应双尺度块的输出特征,提高了上下文特征之间的关联性;最后,自适应双维度注意力自主选择不同维度注意力细化输出特征后,提高了输出特征的鉴别力。实验结果表明,在Set5,Set14,BSD100和Urban100测试集上,本文方法在PSNR和SSIM定量指标上相比于其他主流方法相均有提升,尤其对于纹理细节难以恢复的Urban100测试集,本文方法在比例因子为×4时,相较于现有最优方法SwinIR,PSNR和SSIM指标分别提升了0.05 dB和0.0045;在视觉效果方面,本文的重建图像具有更多的纹理细节。 展开更多
关键词 分辨率 多尺度特征 注意力机制 自适应权重 渐进式信息交互
在线阅读 下载PDF
基于改进边缘注意力生成对抗网络的电力设备热成像超分辨率重建 被引量:6
2
作者 王艳 连洪钵 +2 位作者 王寅初 康磊 赵洪山 《电力系统保护与控制》 EI CSCD 北大核心 2024年第3期119-127,共9页
针对低分辨率电力设备热成像图像,提出一种基于改进边缘注意力生成对抗网络的超分辨率重建方法。首先,在边缘注意力的基础上,引入通道注意力和位置注意力的双注意力模块(dual attention, DA),捕获特征图不同位置间和不同通道间的依赖关... 针对低分辨率电力设备热成像图像,提出一种基于改进边缘注意力生成对抗网络的超分辨率重建方法。首先,在边缘注意力的基础上,引入通道注意力和位置注意力的双注意力模块(dual attention, DA),捕获特征图不同位置间和不同通道间的依赖关系,并将两组依赖关系进行融合,以加大全局信息的提取程度。然后针对参数修正线性单元激活函数(parametric rectified linear unit, PReLU)对网络中神经元进行无差别激活,导致网络特征表达能力受限问题。采用改进β-ACONC自适应控制激活函数替代PRe LU函数,在辨识有效特征的基础上,对神经元进行选择性激活,以强化有效特征、弱化无效特征,提升网络的自适应激活能力和特征表达能力。最后对所提改进边缘注意力生成对抗网络模型(edge-attention generative adversarial network, EA-GAN)进行实验验证。结果表明,与Bi Cubic双三次插值模型和原EA-GAN模型边缘注意力生成对抗网络模型相比,所提改进模型网络性能最好,重建图像质量最高,客观评价指标峰值信噪比(peaksignal-to-noiseratio, PSNR)均值、结构相似性(structural similarity,SSIM)均值和均方误差损失(mean square error loss, MSE-loss)均值最优,在电力设备红外图像重建领域普适性较高,具有一定的工程应用价值。 展开更多
关键词 热成像 分辨率重建 注意力机制 自适应激活函数
在线阅读 下载PDF
基于EM自注意力残差的图像超分辨率重建网络
3
作者 黄淑英 胡瀚洋 +2 位作者 杨勇 万伟国 吴峥 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期388-397,共10页
基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注... 基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注意力残差的图像超分辨率重建网络。该网络通过改进基础残差块,构建特征增强残差块,以更好地复用残差块中所提取的特征。为增加特征信息在空间上的相关性,引入EM自注意力机制,构建EM自注意力残差模块来增强模型中每个模块的特征提取能力,并通过级联EM自注意力残差模块来构建整个模型的特征提取结构。所获得的特征图通过上采样的图像重建模块获得重建的高分辨率图像。将所提方法与主流方法进行实验对比,结果表明:所提方法在5个流行的SR测试集上能够取得较好的主观视觉效果和更优的性能指标。 展开更多
关键词 分辨率重建 注意力机制 期望最大化 特征增强残差块 EM自注意力残差模块
在线阅读 下载PDF
基于自适应级联的注意力网络的超分辨率重建 被引量:7
4
作者 陈一鸣 周登文 《自动化学报》 EI CAS CSCD 北大核心 2022年第8期1950-1960,共11页
深度卷积神经网络显著提升了单图像超分辨率的性能.通常,网络越深,性能越好.然而加深网络往往会急剧增加参数量和计算负荷,限制了在资源受限的移动设备上的应用.提出一个基于轻量级自适应级联的注意力网络的单图像超分辨率方法.特别地... 深度卷积神经网络显著提升了单图像超分辨率的性能.通常,网络越深,性能越好.然而加深网络往往会急剧增加参数量和计算负荷,限制了在资源受限的移动设备上的应用.提出一个基于轻量级自适应级联的注意力网络的单图像超分辨率方法.特别地提出了局部像素级注意力模块,给输入特征的每一个特征通道上的像素点都赋以不同的权值,从而为重建高质量图像选取更精确的高频信息.此外,设计了自适应的级联残差连接,可以自适应地结合网络产生的层次特征,能够更好地进行特征重用.最后,为了充分利用网络产生的信息,提出了多尺度全局自适应重建模块.多尺度全局自适应重建模块使用不同大小的卷积核处理网络在不同深度处产生的信息,提高了重建质量.与当前最好的类似方法相比,该方法的参数量更小,客观和主观度量显著更好. 展开更多
关键词 分辨率 轻量级 注意力机制 多尺度重建 自适应参数
在线阅读 下载PDF
基于残差注意力网络的地震数据超分辨率方法 被引量:14
5
作者 周文辉 石敏 +1 位作者 朱登明 周军 《计算机科学》 CSCD 北大核心 2021年第8期24-31,共8页
地震数据在油气勘探、地质勘探领域发挥着至关重要的作用。精确详细的地震数据有助于对油气勘探做出精确指导,减小勘探的风险,从而产生巨大的社会效益和经济效益。在提升地震数据分辨率方面,现有的方法在面对海量数据时,在高分辨恢复、... 地震数据在油气勘探、地质勘探领域发挥着至关重要的作用。精确详细的地震数据有助于对油气勘探做出精确指导,减小勘探的风险,从而产生巨大的社会效益和经济效益。在提升地震数据分辨率方面,现有的方法在面对海量数据时,在高分辨恢复、去噪性能和效率上效果欠佳,难以恢复出细节丰富的地质信息,无法满足实际需求。地震数据能够反映地质构造以及地层的组成,具有局部相关性高、全局相关性低的特点。同时,地震数据高频部分通常蕴含着地质勘探等重要信息,如分层、断层信息等。针对地震数据的特点,文中将地震数据重建问题转化为图像超分辨率问题,提出了采用基于生成对抗网络的地震数据超分辨方法。针对地震数据分布具有局部相关性高、全局相关性低的特点,设计残差注意力模块,挖掘地震数据的内在相关性,通过训练含有相对生成对抗损失函数的生成对抗网络模型,来对地震数据进行超分辨率恢复,以得到更加精确的地震数据。在真实的地震数据集上进行了实验验证,结果表明,所提方法在地震数据超分辨上效果良好,在性能指标PSNR和SSIM上有3%~4%的提升,具有较强的实用性。 展开更多
关键词 地震数据 残差注意力模块 生成对抗网络 相对生成对抗损失 分辨率
在线阅读 下载PDF
基于特征图注意力机制的图像超分辨率重建 被引量:9
6
作者 鲁甜 刘蓉 +1 位作者 刘明 冯杨 《计算机工程》 CAS CSCD 北大核心 2021年第3期261-268,共8页
图像超分辨率重建中的高频分量通常包含较多轮廓、纹理等细节信息,为更好地处理特征图中的高频分量与低频分量,实现自适应调整信道特征,提出一种基于特征图注意力机制的图像超分辨重建网络模型。利用特征提取块提取原始低分辨率图像中... 图像超分辨率重建中的高频分量通常包含较多轮廓、纹理等细节信息,为更好地处理特征图中的高频分量与低频分量,实现自适应调整信道特征,提出一种基于特征图注意力机制的图像超分辨重建网络模型。利用特征提取块提取原始低分辨率图像中的特征信息,基于多个结合特征图注意力机制的信息提取块,通过特征信道之间的相互依赖性自适应调整信道特征,以恢复更多细节信息。在此基础上利用重建模块重建出不同尺度的高分辨率图像。在Set5数据集上的实验结果表明,与基于双三次插值的重建模型相比,该模型能够有效提升图像的视觉效果,且峰值信噪比与结构相似度分别提高了3.92 dB和0.056。 展开更多
关键词 分辨率重建 特征图注意力机制 自适应调整 残差信息 分辨率图像
在线阅读 下载PDF
面向超分辨率重建的层次间局部特征增强网络
7
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
在线阅读 下载PDF
基于动态金字塔和子空间注意力的图像超分辨率重建网络 被引量:6
8
作者 何鹏浩 余映 徐超越 《计算机科学》 CSCD 北大核心 2022年第S02期423-430,共8页
针对现有单图像超分辨率卷积神经网络存在模型参数过多以及重建失真过大的问题,提出了一种基于动态金字塔结构与子空间注意力模块的轻量级单图像超分辨率网络模型。首先,所采用的动态多尺度金字塔特征组合模块的网络主体由动态卷积和金... 针对现有单图像超分辨率卷积神经网络存在模型参数过多以及重建失真过大的问题,提出了一种基于动态金字塔结构与子空间注意力模块的轻量级单图像超分辨率网络模型。首先,所采用的动态多尺度金字塔特征组合模块的网络主体由动态卷积和金字塔分组卷积构成。其次,动态卷积可以根据不同的图像内容自适应地进行不同的卷积操作,从而对不同的图像提取出不同的特征;金字塔分组卷积不仅可以更好地提取多尺度图像特征信息,而且能够有效降低网络模型的参数量。最后,在网络模型末端采用子空间注意力模块,将图像的通道空间分为多个子空间,并为每个子空间学习不同的注意力图,这样不仅可以更好地捕获图像的跨通道相关信息,而且可以有效融合各子空间的图像特征信息。与现有主流算法相比,所提方法不仅具有更小的网络模型参数量,而且重建出的超分辨率图像在视觉效果和定量分析方面均能取得更好的表现。 展开更多
关键词 分辨率 轻量级 动态卷积 金字塔分组卷积 子空间注意力模块
在线阅读 下载PDF
基于注意力和多尺寸卷积的超分辨率算法研究
9
作者 梁超 黄洪全 陈延明 《传感器与微系统》 CSCD 北大核心 2021年第12期85-88,共4页
为了解决深层卷积模型的超分辨率技术计算量大、融合的特征不够全面的问题,模型结构不再从深度上进行加深,而是从宽度上进行扩展。对输入的一张特征图进行多尺寸的卷积处理,在结构上融合残差结构、压缩模块和改进的通道注意力模块,融合... 为了解决深层卷积模型的超分辨率技术计算量大、融合的特征不够全面的问题,模型结构不再从深度上进行加深,而是从宽度上进行扩展。对输入的一张特征图进行多尺寸的卷积处理,在结构上融合残差结构、压缩模块和改进的通道注意力模块,融合多尺寸的特征图的同时灵活运用高、低频信息,最终达到提高重建图像质量的效果。实验结果表明:与目前较为流行的超分辨率算法相比,在参数量上有了一定的减少,且在峰值信噪比和结构相似性上有着良好的表现。 展开更多
关键词 分辨率 多尺寸卷积 残差结构 通道注意力模块
在线阅读 下载PDF
基于密集残差连接U型网络的噪声图像超分辨率重建
10
作者 刘鹏南 李龙 +2 位作者 张紫豪 朱星光 程德强 《工矿自动化》 CSCD 北大核心 2024年第2期63-71,共9页
现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨... 现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨率重建。在特征提取路径中引入基于密集残差连接的去噪模块,通过密集连接的方式对图像特征进行充分提取,再利用残差学习的特点对低分辨率噪声图像进行有效去噪;在重建路径中引入残差特征注意力蒸馏模块,通过在残差块中融入增强特征注意力块,对不同空间的特征赋予不同的权重,加强网络对于图像关键特征的提取能力,同时减少图像细节特征在残差块中的损失,从而更好地恢复图像细节信息。在煤矿井下图像数据集及公共数据集上进行了对比实验,结果表明:在客观评价指标上,所提网络的结构相似度、图像感知相似度均优于对比网络,且在复杂度及运行速度上有着较好的均衡;在主观视觉效果上,所提网络重建的图像基本消除了原有图像噪声,有效恢复了图像的细节特征。 展开更多
关键词 噪声图像 分辨率重建 密集残差连接 U型网络 去噪模块 残差特征注意力蒸馏模块
在线阅读 下载PDF
基于动态自适应层叠网络的轻量化图像超分辨率重建 被引量:1
11
作者 张法正 杨娟 +1 位作者 汪荣贵 薛丽霞 《计算机工程》 CAS CSCD 北大核心 2022年第12期196-202,共7页
轻量化超分辨率网络对安防监控、实时人脸识别等领域具有重要意义。然而,现有超分辨率重建网络以牺牲内存和计算成本为代价提高重建效果,从而限制其在实际场景中的应用。提出基于动态自适应层叠网络的轻量化超分辨率重建网络。利用双路... 轻量化超分辨率网络对安防监控、实时人脸识别等领域具有重要意义。然而,现有超分辨率重建网络以牺牲内存和计算成本为代价提高重建效果,从而限制其在实际场景中的应用。提出基于动态自适应层叠网络的轻量化超分辨率重建网络。利用双路残差块中的深度可分离卷积提取低频特征,并引入像素注意力机制获取更丰富的细节特征,以减少参数量并增强网络的重建能力。将双路残差块中的一部分卷积参数作为动态卷积核的子卷积,并与动态自适应模块共享,利用可学习参数调节共享卷积的权重,增强网络的非线性映射关系,充分提取图像的纹理细节信息。实验结果表明,相比VDSR、CARN、PAN等网络,该网络重建得到的图像纹理更接近原始图像,其参数量仅为传统轻量化网络CARN的1/2,在放大因子为4的Set5数据集上峰值信噪比相比CARN提高0.16 dB。 展开更多
关键词 分辨率重建 轻量化网络 动态自适应层叠网络 动态卷积 注意力机制 深度学习
在线阅读 下载PDF
矿井图像超分辨率重建研究 被引量:2
12
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 分辨率重建 分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
基于多尺度双阶段网络的图像超分辨率重建 被引量:2
13
作者 陈清江 尹乐璇 邵罗仡 《应用光学》 CAS 北大核心 2023年第6期1343-1354,共12页
针对目前图像超分辨率重建算法中所存在的特征信息提取不充分、重建图像细节信息模糊等问题,提出了一种多尺度双阶段网络来实现图像的超分辨率重建。首先,考虑到单尺度卷积层会出现特征信息提取不充分的现象,故而以多尺度卷积层为大体框... 针对目前图像超分辨率重建算法中所存在的特征信息提取不充分、重建图像细节信息模糊等问题,提出了一种多尺度双阶段网络来实现图像的超分辨率重建。首先,考虑到单尺度卷积层会出现特征信息提取不充分的现象,故而以多尺度卷积层为大体框架,设计网络模型;其次,考虑到重建后的图像效果,将整体网络分为2个阶段,第1阶段根据输入的低分辨率图像进行特征信息的提取和重建,第2阶段对重建后的图像进行更深一步的特征细化,从而提高重建图像的视觉效果;整体网络中还引入了跳跃连接和注意力模块,以加强特征信息的有效传播;最后,以数据集Set5、Set14、Urban100、BSDS100和Manga109作为测试集展开实验,峰值信噪比和结构相似度作为图像质量的评价指标。实验结果表明,二者的值相比以往均有所提高,且重建图像视觉效果较好。因此,该算法在客观评价和主观视觉上都取得了较好的结果。 展开更多
关键词 图像分辨率重建 多尺度 双阶段 跳跃连接 注意力模块
在线阅读 下载PDF
用于图像超分辨率重建的双通道残差网络 被引量:4
14
作者 左龙 张鹏 +2 位作者 荆树旭 赵一 李凡 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第1期158-164,共7页
针对现有基于深度学习的自然图像超分辨率算法在图像高频细节重建方面的不足,提出了一种更注重图像高频细节重建的双通道残差网络。使用带有通道注意力机制的残差结构作为网络的主通道;为了在重建过程中更好地保留原始图像的几何结构和... 针对现有基于深度学习的自然图像超分辨率算法在图像高频细节重建方面的不足,提出了一种更注重图像高频细节重建的双通道残差网络。使用带有通道注意力机制的残差结构作为网络的主通道;为了在重建过程中更好地保留原始图像的几何结构和边缘信息,使用自适应结构化卷积设计了网络的辅助通道,以此构建的双通道残差网络在学习过程中会有更强的高频信息捕获能力;为了使重建图像效果更加符合人眼的主观视觉感受,结合使用L1损失函数和多尺度结构相似度损失函数来训练网络,使网络在训练过程中能够较好地保留图像的视觉效果。实验结果表明:在主通道外并构基于结构化卷积的辅助通道可以使重建图像的峰值信噪比提高2 dB;结合使用L1损失函数和多尺度结构相似度损失函数可以使重建图像的峰值信噪比提高3 dB、结构相似性提高0.5;与同类网络客观定量相比,所提网络在两个公开数据集上取得的效果更优。 展开更多
关键词 分辨率重建 深度学习 通道注意力 残差网络 自适应结构化卷积
在线阅读 下载PDF
基于密集反馈网络的单幅图像超分辨率重建 被引量:1
15
作者 刘锡泽 范红 +3 位作者 海涵 王鑫城 许武军 倪林 《计算机工程》 CAS CSCD 北大核心 2021年第11期254-261,共8页
基于深度学习的单幅图像超分辨率网络模型体积庞大,导致参数利用率低且难以部署,对中间层特征利用不充分。提出一种密集反馈注意力网络(DFAN)模型。在同一特征图中通过多尺度残差注意力模块(MRAB)提取不同尺度的深层特征,以增加特征的... 基于深度学习的单幅图像超分辨率网络模型体积庞大,导致参数利用率低且难以部署,对中间层特征利用不充分。提出一种密集反馈注意力网络(DFAN)模型。在同一特征图中通过多尺度残差注意力模块(MRAB)提取不同尺度的深层特征,以增加特征的多样性。同时将每个MRAB的输出均作为同组中其他残差模块的输入,使各层之间的信息流最大化,从而减小训练难度。实验结果表明,相比VDSR、DRRN、MemNet等模型,DFAN模型具有较优的重建效果,其在重建放大倍数为4的Set5数据集上计算复杂度仅为VDSR模型的0.14倍左右,而峰值信噪比提高了0.57 dB。 展开更多
关键词 单幅图像分辨率重建 深度学习 密集反馈模型 注意力机制 残差模块
在线阅读 下载PDF
基于改进SRGAN模型的人脸图像超分辨率重建 被引量:6
16
作者 李培育 张雅丽 《计算机工程》 CAS CSCD 北大核心 2023年第4期199-205,共7页
传统生成对抗网络模型重建人脸图像时出现过多失真,难以在减少失真的情况下有效提高人脸图像真实感。针对该问题,在生成对抗网络SRGAN模型的基础上,提出一种改进的人脸图像超分辨率重建方法。为提高重建像素点与周围像素点的相关性,将... 传统生成对抗网络模型重建人脸图像时出现过多失真,难以在减少失真的情况下有效提高人脸图像真实感。针对该问题,在生成对抗网络SRGAN模型的基础上,提出一种改进的人脸图像超分辨率重建方法。为提高重建像素点与周围像素点的相关性,将双注意力机制模块嵌入到SRGAN模型的生成器和判别器中,在空间域和通道域中获取更精准的特征依赖关系。同时应用自适应激活函数ACON取代原SRGAN网络中的激活函数,通过动态学习ACON激活函数参数为每个神经元设计不同激活形式,从而提高网络特征表达能力。使用改进SRGAN的人脸图像超分辨率重建算法在CelebA测试集上进行重建实验,结果表明:该算法较原算法PSNR值提高0.675 dB,SSIM值提高0.016,LPIPS值优化0.036,有效减少了重建人脸图像中眼睛等重点部位的失真情况;与其他非生成对抗网络的主流算法相比,LPIPS值最低优化0.107,最高优化0.205,有效提高了重建人脸图像的真实感。 展开更多
关键词 分辨率重建 生成对抗网络 注意力机制 自适应激活函数 特征提取
在线阅读 下载PDF
回环结构与PAM结合的双目图像超分辨率网络 被引量:1
17
作者 李雪 张红英 +1 位作者 吴亚东 廉炜雯 《计算机工程与应用》 CSCD 北大核心 2022年第17期239-248,共10页
双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。该网络特征提取模块由MJR-ASPP+构成的回环结构... 双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。该网络特征提取模块由MJR-ASPP+构成的回环结构与扩张残差块交替级联而成,回环结构中混合跳跃式残差(MJR)能聚合网络中不同深度的信息,改进空洞空间金字塔池化块(ASPP+)用于提取图像多尺度特征,扩张残差块融合多级特征的同时有效去噪;引入视差注意力模块获取双目图像中的全局对应关系,集成图像对的有用信息;通过亚像素层重建出超分辨率左(右)图,并将FReLU用于整个网络中提高捕获空间相关性效率。该网络在Middlebury、KITTI2012、KITTI2015和Flickr1024四个公开数据集中都取得了优异结果,实验结果表明该网络具有更好的超分辨率性能。 展开更多
关键词 双目图像分辨率重建 深度学习 回环结构 视差注意力模块 混合跳跃式残差 空洞空间金字塔池化
在线阅读 下载PDF
基于多分支注意力孪生网络的目标跟踪算法 被引量:1
18
作者 余陆斌 田联房 杜启亮 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第12期30-40,共11页
目标跟踪在计算机视觉任务中有重要的意义。近年来随着深度学习的发展,基于孪生网络的目标跟踪算法因其优异的性能而被广泛应用。然而,现有基于孪生网络的跟踪算法在目标发生较大形变、低分辨率、复杂背景等情况下的跟踪性能通常会显著... 目标跟踪在计算机视觉任务中有重要的意义。近年来随着深度学习的发展,基于孪生网络的目标跟踪算法因其优异的性能而被广泛应用。然而,现有基于孪生网络的跟踪算法在目标发生较大形变、低分辨率、复杂背景等情况下的跟踪性能通常会显著下降。为此,文中提出了一种基于多分支注意力孪生网络的目标跟踪算法。该算法首先构建了超分辨率模块和数据增强模块,分别对目标模板进行超分辨率和数据增强,提升目标模板的特征表征能力;然后利用3个主干网络分别提取原始目标模板、超分辨率目标模板和数据增强目标模板的特征,并进行特征融合,同时在主干网络中应用了通道注意力模块和空间注意力模块,以提升特征提取能力;最后,将融合后的特征图与待搜索区域的特征图输入区域生成网络模块,得到目标跟踪信息。实验结果表明,该算法在OTB100数据集上的精确率为0.919、成功率为0.707,在VOT2018数据集上的准确率为0.642、鲁棒性为0.149,在实际场景中的运行速度每秒至少20次,说明该算法具有优异的跟踪性能,并且在各种复杂场景下都具有良好的鲁棒性。 展开更多
关键词 目标跟踪 孪生网络 分辨率 数据增强 注意力模块
在线阅读 下载PDF
多分支残差特征蒸馏网络的图像超分辨重建 被引量:3
19
作者 李轩 刘立柱 《小型微型计算机系统》 CSCD 北大核心 2023年第2期363-369,共7页
近年来基于深度卷积神经网络的单幅图像超分辨率技术取得了很大进展.但特征提取方式单一,模型参数量大很难在移动端部署.为了解决这些问题,本文提出了一种多分支残差特征蒸馏算法.首先,通过多分支残差模块进行深层特征提取;其次,结合卷... 近年来基于深度卷积神经网络的单幅图像超分辨率技术取得了很大进展.但特征提取方式单一,模型参数量大很难在移动端部署.为了解决这些问题,本文提出了一种多分支残差特征蒸馏算法.首先,通过多分支残差模块进行深层特征提取;其次,结合卷积、通道自适应激活函数和瓶颈注意力模块进行特征蒸馏及融合,减少平坦区域的大量冗余参数,在保证性能的同时降低模型复杂度;最后通过亚像素卷积层进行图像重建,得到最终的超分辨率图像.实验结果表明该算法在模型复杂度和性能上达到更好的平衡.与IMDN(Information Multi-distillation Network)相比,该算法的PSNR和SSIM分别有0.06~0.26dB与0.001~0.006的提升;在2倍超分重建结果中,与千万级参数量模型DBPN(Deep Back-Projection Networks)相比,本文算法参数量是其1/15,PSNR基本相同,SSIM提高0.001. 展开更多
关键词 图像分辨率 多分支卷积 残差模块 注意力机制 特征蒸馏
在线阅读 下载PDF
改进YOLOv8n的果园番茄目标检测算法 被引量:4
20
作者 杨国亮 盛杨杨 +1 位作者 洪鑫芳 张佳琦 《计算机工程与应用》 CSCD 北大核心 2024年第23期238-248,共11页
针对自然果园环境下,不同生长周期的番茄姿态多变,易受光线、绿色叶片背景影响导致图像特征不明显,番茄果实生长时易出现扎堆密集以及枝叶藤蔓遮挡等情况,时常造成漏检、误检等问题,提出了一种基于改进YOLOv8n的番茄生长周期采摘检测方... 针对自然果园环境下,不同生长周期的番茄姿态多变,易受光线、绿色叶片背景影响导致图像特征不明显,番茄果实生长时易出现扎堆密集以及枝叶藤蔓遮挡等情况,时常造成漏检、误检等问题,提出了一种基于改进YOLOv8n的番茄生长周期采摘检测方法。在Backbone中设计超分辨率自适应注意力模块(super-resolution adaptive attention module,SPAAM),有效提升特征图像分辨率,改善小目标番茄特征提取不充分的问题,并结合坐标注意力机制(coordinate attention,CA)提高关键位置信息提取能力;设计C2f-DCF替换原有C2f,用于自适应番茄姿态形变特征,提高对形变物体空间布局的建模能力,同时提升计算效率;设计GSCHead降低头部参数量,并且添加四倍下采样分支提高对小目标番茄的约束效果;引入Wise-IoU损失函数,提升模型在不同质量图像上训练的泛化性能。改进后的算法在测试集上精确率达到93.9%,相较于原模型提升1.9个百分点,参数量降低0.18×106,有效改善了遮挡情况的漏检率和小目标番茄的检测性能,同时检测速度达到139 FPS,可以便捷地部署到终端完成实时检测。 展开更多
关键词 番茄检测 YOLOv8n 分辨率自适应注意力模块(spaam) C2f-DCF GSCHead 损失函数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部