期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
基于图像超分辨率生成对抗网络的MIMO信道估计方法
1
作者 危梦 张清河 《微波学报》 CSCD 北大核心 2024年第4期46-51,共6页
在毫米波大规模多输入多输出系统中,针对传统信道估计需要借助信道和噪声的统计特性来提高精度的弊端,提出了一种基于图像超分辨率生成对抗网络的信道估计算法(SRGAN),将信道估计建模为图像超分辨率恢复问题。首先,采取最小二乘算法得... 在毫米波大规模多输入多输出系统中,针对传统信道估计需要借助信道和噪声的统计特性来提高精度的弊端,提出了一种基于图像超分辨率生成对抗网络的信道估计算法(SRGAN),将信道估计建模为图像超分辨率恢复问题。首先,采取最小二乘算法得到导频位置处的信道信息;其次,通过二维线性插值得到分辨率较低的信道矩阵信息作为所提SRGAN网络的输入;最后,通过训练恢复出真实信道频率响应。仿真实验表明:文中所提信道估计算法的性能较传统信道估计算法有较大的提升,并且恢复的信道更符合真实信道。 展开更多
关键词 大规模MIMO 信道估计 图像分辨率 生成对抗网络
在线阅读 下载PDF
基于增强型超分辨率生成对抗网络的文物图像色彩重建 被引量:1
2
作者 周小力 史方 +1 位作者 赖松雨 骆忠强 《无线电工程》 北大核心 2023年第1期220-229,共10页
针对书画文物的褪色和画面暗旧等问题,提出了一种基于增强型超分辨率生成对抗网络的文物图像色彩重建(Color Reconstruction of Cultural Relic Images Based on Enhanced Super-Resolution Generative Adversarial Network, CR-ESRGAN... 针对书画文物的褪色和画面暗旧等问题,提出了一种基于增强型超分辨率生成对抗网络的文物图像色彩重建(Color Reconstruction of Cultural Relic Images Based on Enhanced Super-Resolution Generative Adversarial Network, CR-ESRGAN)模型。该模型针对缺少成对图像的数据集问题,在双3次下采样的基础上提出了利用颜色迁移算法来生成逼真的暗旧、褪色的文物图像。同时改进了ESRGAN网络,在其生成网络中引入自注意力机制,以增强重建图像的纹理细节。在常用图像质量评价指标峰值信噪比(Peak Signal to Noise Ratio, PSNR)/结构相似性(Structural Sililarity Index, SSIM)的基础上引入颜色评价指标CIEDE2000,以更加全面、客观地评价重建图像的质量。与现有几种超分辨率算法以及其文物图像色彩修复方法相比,视觉效果和图像质量有较高的提升。 展开更多
关键词 书画文物图像 分辨率重建 色彩修复 生成对抗网络 自注意力机制
在线阅读 下载PDF
基于注意力的生成对抗网络图像超分辨率重建
3
作者 张惠君 李桐 《北京印刷学院学报》 2025年第3期56-62,共7页
针对部分模型未能有效利用特征信息,存在模型训练不稳定、生成图片模糊、质量不高等问题,对SRGAN模型进行改进,提出一种融合注意力机制的WGAN图像超分辨率重建算法(CBAMWGAN)。在SRGAN的残差网络中融合注意力机制(CBAM)模块,使网络自适... 针对部分模型未能有效利用特征信息,存在模型训练不稳定、生成图片模糊、质量不高等问题,对SRGAN模型进行改进,提出一种融合注意力机制的WGAN图像超分辨率重建算法(CBAMWGAN)。在SRGAN的残差网络中融合注意力机制(CBAM)模块,使网络自适应调整各通道权重,关注图像中的重要区域,以更好地表达高频特征;同时去除生成器中的BN层和使用Leaky ReLU激活函数,进一步提升了模型的计算效率和生成图像质量;最后引入WGAN的思想,用Wasserstein距离代替判别器中的二分类交叉熵损失,提高了网络训练的稳定性。将训练好的模型在Set5、Set14、BSDS100三个数据集上进行测试,并将重建效果与Bicubic、SRCNN、VDSR、SRGAN进行对比。实验结果表明,CBAMWGAN模型无论在客观指标上,还是主观视觉效果上均优于对比模型。 展开更多
关键词 图像分辨率重建 注意力机制 生成对抗网络 Wasserstein GAN
在线阅读 下载PDF
基于边缘提取和增强的遥感图像超分辨率网络
4
作者 余翔 丁彦文 杨路 《激光杂志》 北大核心 2025年第2期115-123,共9页
针对遥感图像分辨率低于传统图像且受到复杂退化过程的影响,传统生成对抗网络会生成不真实的特征,导致出现伪影和大量虚假、尖锐的边缘等问题。提出了一种基于边缘提取和增强的遥感图像超分辨率网络EEEGAN。该网络首先采用了边缘提取算... 针对遥感图像分辨率低于传统图像且受到复杂退化过程的影响,传统生成对抗网络会生成不真实的特征,导致出现伪影和大量虚假、尖锐的边缘等问题。提出了一种基于边缘提取和增强的遥感图像超分辨率网络EEEGAN。该网络首先采用了边缘提取算法TEED以提取图像边缘。其次设计了双重注意力机制TAM以获取图像丰富的空间和通道信息。同时提出了一种基本块RRDJB以扩大模型的处理能力,并引入下采样网络SPD进一步减少细节损失。在RSOD数据集的基础上,根据退化模型对数据集进行了不同的数据退化处理。结果表明文中所提出的模型,在不同的退化条件下,与目前的主流图像超分辨率模型相比,指标均有所提升。文中的方法相对于真实增强图像超分辨率对抗网络在退化条件I的样本上SSIM提升了0.034,PSNR提升了1.329 8 dB。图像在重建后,边缘细节的视觉效果更好。并且,在DIOR和HRSC2016数据集上均取得了良好的泛化效果。 展开更多
关键词 分辨率 遥感图像 边缘提取 注意力机制 生成对抗网络
在线阅读 下载PDF
基于轻量化生成对抗网络的遥感图像超分辨率重建
5
作者 张鹏婴 张明 +1 位作者 李建军 张宝华 《激光杂志》 CAS 北大核心 2024年第4期114-120,共7页
针对ESRGAN模型复杂度高、特征提取与表示性能欠佳的问题,提出了一种基于轻量化生成对抗网络(Light weight Generative Adversarial Network, LwGAN)的遥感图像超分辨率重建算法。该算法以改进残差密集模块(Improved Residual Dense Blo... 针对ESRGAN模型复杂度高、特征提取与表示性能欠佳的问题,提出了一种基于轻量化生成对抗网络(Light weight Generative Adversarial Network, LwGAN)的遥感图像超分辨率重建算法。该算法以改进残差密集模块(Improved Residual Dense Block, IRDB)为基础块构建生成网络的高阶特征提取部分,提取了丰富的多样化特征,同时建立了特征的通道及长距离位置关系,在降低模型参数量的同时提升了模型的特征提取与表示性能。通过在UC MERCED和NWPU-RESISC45数据集上的实验结果表明,与ESRGAN相比,LwGAN获取了更大的峰值信噪比和结构相似度,显著提升了遥感图像的超分辨率重建性能,可视化结果表明重建图像恢复了更多的纹理细节信息,同时模型参数量仅为原始ESRGAN的约三分之一,大幅地提高了模型的运行效率,为后续遥感图像的分析处理奠定了基础。 展开更多
关键词 分辨率重建 遥感图像 生成对抗网络 残差密集 坐标注意力
在线阅读 下载PDF
基于密集残差和质量评估引导的频率分离生成对抗超分辨率重构网络
6
作者 韩玉兰 崔玉杰 +1 位作者 罗轶宏 兰朝凤 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第12期4563-4574,共12页
生成对抗网络因其为盲超分辨率重构提供了新的思路而备受关注。针对现有方法未充分考虑图像退化过程中的低频保留特性而对高低频成分采用相同的处理方式,缺乏对频率细节有效利用,难以获得较好重构效果的问题,该文提出一种基于密集残差... 生成对抗网络因其为盲超分辨率重构提供了新的思路而备受关注。针对现有方法未充分考虑图像退化过程中的低频保留特性而对高低频成分采用相同的处理方式,缺乏对频率细节有效利用,难以获得较好重构效果的问题,该文提出一种基于密集残差和质量评估引导的频率分离生成对抗超分辨率重构网络。该网络采用频率分离思想,对图像的高频和低频信息分开处理,从而提高高频信息捕捉能力,简化低频特征处理。该文对生成器中的基础块进行设计,将空间特征变换层融入密集宽激活残差中,增强深层特征表征能力的同时对局部信息差异化处理。此外,利用视觉几何组网络(VGG)设计了专门针对超分辨率重构图像的无参考质量评估网络,为重构网络提供全新的质量评估损失,进一步提高重构图像的视觉效果。实验结果表明,同当前先进的同类方法比,该方法在多个数据集上具有更佳的重构效果。由此表明,采用频率分离思想的生成对抗网络进行超分辨率重构,可以有效利用图像频率成分,提高重构效果。 展开更多
关键词 分辨率 生成对抗网络 频率分离 质量评估 密集残差
在线阅读 下载PDF
深度生成式对抗网络的超分辨率图像修复与重建 被引量:7
7
作者 李云红 穆兴 +3 位作者 朱耀麟 汤汶 苏雪平 谢蓉蓉 《西安工程大学学报》 CAS 2021年第5期56-63,共8页
针对目前图像修复中存在的大面积缺失、修复语义不连贯、纹理不清晰、分辨率低等问题,提出一种深度生成式对抗网络的超分辨率(deep super resolution generative adversarial network,DSRGAN)图像修复与重建方法。首先,提出改进的Dense... 针对目前图像修复中存在的大面积缺失、修复语义不连贯、纹理不清晰、分辨率低等问题,提出一种深度生成式对抗网络的超分辨率(deep super resolution generative adversarial network,DSRGAN)图像修复与重建方法。首先,提出改进的DenseNet网络结构作为生成器,提取图像生成的特征信息实现残损图像上下文信息的准确定位;其次,构建相对条件判别器,实现图像数据集的多方位数据梯度接收;再次,利用DenseNet网络与深度生成网络相结合,建立图像低维信息和高维信息之间的映射关系;最后,将DSRGAN与GCA、SI、PIC模型通过CelebA、Places2及残损纺织物3个数据集进行实验测试。结果表明:残损图像经DSRGAN模型修复后的峰值信噪比和结构相似性具有明显的优势,峰值信噪比平均提高了2.57 dB、3.17 dB、5.89 dB;结构相似性平均提高了0.0835、0.1481、0.2641。 展开更多
关键词 对抗生成网络 分辨率 图像修复 生成 DenseNet网络 相对条件判别器
在线阅读 下载PDF
基于生成式对抗网络的文物图像超分辨率重建及色彩修复 被引量:6
8
作者 朱欣娟 雷倩 吴晓军 《西安工程大学学报》 CAS 2021年第3期86-92,共7页
针对历史久远导致的文物表面暗旧、图像褪色等问题,提出了一种生成式对抗网络的文物图像超分辨(cultural relics super-resolution generative adversarial network,CR-SRGAN)模型。该模型针对图像的退化问题,通过在原始的双三次插值下... 针对历史久远导致的文物表面暗旧、图像褪色等问题,提出了一种生成式对抗网络的文物图像超分辨(cultural relics super-resolution generative adversarial network,CR-SRGAN)模型。该模型针对图像的退化问题,通过在原始的双三次插值下采样的基础上加上噪音和色彩暗旧处理得到高分辨图像对应的低分辨率图像数据集,然后利用得到的高低分辨率图像训练生成对抗网络,2个子网络不断博弈优化自身性能,最终实现暗旧文物图像的色彩修复和超分辨图像生成。实验结果表明:相比于双三次插值,CR-SRGAN在峰值信噪比(peak signal to noise ratio,PSNR)上平均提高了0.86 dB,在结构相似度(structural similarity,SSIM)上平均提高了0.04,另外从主观来看,褪色图像重建纹理时色彩也得到了一定的修复。 展开更多
关键词 文物图像 分辨 色彩修复 生成对抗网络 双三次插值
在线阅读 下载PDF
基于无配对生成对抗网络的图像超分辨率重建 被引量:2
9
作者 李学相 曹淇 刘成明 《郑州大学学报(工学版)》 CAS 北大核心 2021年第5期1-6,共6页
针对基于生成对抗网络的图像超分辨率重建方法依赖配对数据集训练且结果不稳定的问题,提出了一个新的基于无配对图像的模型NM-SRGAN。首先,通过使用循环生成对抗网络作预处理模块,使模型可以不依赖配对数据集进行训练且获得更好的输入图... 针对基于生成对抗网络的图像超分辨率重建方法依赖配对数据集训练且结果不稳定的问题,提出了一个新的基于无配对图像的模型NM-SRGAN。首先,通过使用循环生成对抗网络作预处理模块,使模型可以不依赖配对数据集进行训练且获得更好的输入图像,同时该模型取消了BN层的使用,解决了结果不稳定的问题。然后,使用了协方差矩阵捕捉图像的二阶信息,增加了二阶损失函数,更加注重于捕捉图像细节区域部分的变化。最后,通过使用新的VGG损失函数提升了图像的边缘纹理细节。对提出的NM-SRGAN模型在4个标准数据集上进行测试评估,使用客观评价标准对结果图进行评价,NM-SRGAN模型较目前若干先进模型中的最佳峰值信噪比分别提升了0.19、0.03、0.13、0.02 d B,在4个数据集上的评价值均达到最高。实验结果表明,该模型在稳定性、图像质量和细节方面较经典算法均有较好的提升。 展开更多
关键词 分辨率 深度学习 生成对抗网络 无配对 二阶统计量
在线阅读 下载PDF
金字塔方差池化网络的图像超分辨率重建 被引量:1
10
作者 彭晏飞 李泳欣 +1 位作者 孟欣 崔芸 《液晶与显示》 CAS CSCD 北大核心 2024年第10期1380-1390,共11页
为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域... 为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域的上下文信息,从而进一步丰富特征信息量;然后,利用密集连接结构增强特征信息之间的关联性,以提高网络的表达能力;最后,引入组归一化操作来加强网络的收敛性。实验结果表明,该模型与其他方法在Set5、Set14、DIV2K100公开测试集上进行比较,在放大倍数因子为4时,峰值信噪比平均提高了0.509 dB,结构相似性平均提高了0.016。所提模型不仅在峰值信噪比和结构相似性上有一定的提高,其重建图像在视觉效果上也拥有更多的真实细节。 展开更多
关键词 图像分辨率 生成对抗网络 方差池化 密集连接
在线阅读 下载PDF
基于循环生成对抗网络的超分辨率重建算法研究 被引量:8
11
作者 蔡文郁 张美燕 +1 位作者 吴岩 郭嘉豪 《电子与信息学报》 EI CSCD 北大核心 2022年第1期178-186,共9页
为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network,MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络... 为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network,MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络负责将低分辨率(LR)图像重建为高分辨率(HR)图像,退化网络负责将HR图像降采样为LR图像,LR判别器负责鉴别真实LR图像和通过退化网络降采样得到的LR图像,HR判别器负责鉴别真实HR图像和通过重建网络重建得到的HR图像,并且改进了CycleGAN原有的判别器判别方式和损失函数。实验结果验证了MRA-GAN模型与现有算法相比,在峰值信噪比(PSNR)和结构相似性(SSIM)等指标上都有所改进。 展开更多
关键词 图像分辨重建 多级残差网络 循环生成对抗网络 峰值信噪比 结构化相似性
在线阅读 下载PDF
基于生成对抗网络的图像超分辨率方法 被引量:4
12
作者 包晓安 高春波 +2 位作者 张娜 徐璐 吴彪 《浙江理工大学学报(自然科学版)》 2019年第4期499-508,共10页
为了解决生成对抗网络(Generative adversarial network,GAN)训练不稳定问题,降低模型复杂度,加快网络学习速率,提高超分辨率图像的视觉效果和重建速率,提出了一种基于改进生成对抗网络的图像超分辨率方法。该方法以改进的生成对抗网络... 为了解决生成对抗网络(Generative adversarial network,GAN)训练不稳定问题,降低模型复杂度,加快网络学习速率,提高超分辨率图像的视觉效果和重建速率,提出了一种基于改进生成对抗网络的图像超分辨率方法。该方法以改进的生成对抗网络为模型,通过粗粒度主体内容和细粒度细节边缘结合的方式提取图像特征,利用线性组合的方式重建超分辨率图像,采用Wasserstein距离优化生成对抗网络。实验结果表明:该方法能够生成视觉效果良好的超分辨率图像,在Set5、Set14等测试集上,其主观视觉评价和客观量化指标(PSNR、SSIM)都优于SRGAN方法。该方法通过重新设计网络模型,使得特征提取更为全面,网络训练更加充分,有助于提高超分辨率图像重建速度,提高图像质量。 展开更多
关键词 图像分辨率 生成对抗网络 残差学习 深度学习 图像重建
在线阅读 下载PDF
基于拆分注意力网络的单图像超分辨率重建
13
作者 彭晏飞 刘蓝兮 +2 位作者 王刚 孟欣 李泳欣 《液晶与显示》 CAS CSCD 北大核心 2024年第7期950-960,共11页
针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高... 针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高生成器特征提取的能力。其次,在损失函数中引入鲁棒性更好的Charbonnier损失函数和Focal Frequency Loss损失函数代替均方差损失函数,同时加入正则化损失平滑训练结果,防止图像过于像素化。最后,在生成器和判别器中采用谱归一化处理,提高网络的稳定性。在4倍放大因子下,与其他方法在Set5、Set14、BSDS100、Urban100测试集上进行测试比较,本文方法的峰值信噪比比其他对比方法的平均值提升1.419 dB,结构相似性比其他对比方法的平均值提升0.051。实验数据和效果图表明,该方法主观上具有丰富的细节和更好的视觉效果,客观上具有较高的峰值信噪比值和结构相似度值。 展开更多
关键词 分辨率 生成对抗网络 谱归一化 拆分注意力网络
在线阅读 下载PDF
基于坐标注意力生成对抗网络的图像超分辨率重建 被引量:1
14
作者 贺智明 黄志成 《微电子学与计算机》 2023年第12期35-44,共10页
针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化... 针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化在SRGAN的生成器,将坐标注意力机制与残差网络相结合构造CR模块,促进通道之间信息的流通,并加强了网络的特征选择能力;同时在主网络构建了层次化特征融合结构,提高在深层网络中对早期特征的利用,大量的长短跳连接缓解了梯度消失,提高了网络收敛速度.在Set5、Set14、BSD100和Urban100数据集上与RFB-ESRGAN、ESRGAN等模型进行测试,在峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高,同时模型参数量有极大减少,重建的图像在清晰度、结构完整性等方面都有所提高. 展开更多
关键词 图像分辨率重建 生成对抗网络 坐标注意力 残差网络
在线阅读 下载PDF
生成式对抗神经网络的多帧红外图像超分辨率重建 被引量:18
15
作者 李方彪 何昕 +2 位作者 魏仲慧 何家维 何丁龙 《红外与激光工程》 EI CSCD 北大核心 2018年第2期17-24,共8页
生成式对抗神经网络在约束图像生成表现出了巨大潜力,使得其适合运用于图像超分辨率重建。但是使用生成式对抗神经网络重建后的超分辨率图像存在过度平滑,缺少高频细节信息的缺点。针对单帧图像超分辨率重建方法不能有效利用图像序列间... 生成式对抗神经网络在约束图像生成表现出了巨大潜力,使得其适合运用于图像超分辨率重建。但是使用生成式对抗神经网络重建后的超分辨率图像存在过度平滑,缺少高频细节信息的缺点。针对单帧图像超分辨率重建方法不能有效利用图像序列间的时间-空间相关性的问题,提出了一种基于生成式对抗神经网络的多帧红外图像超分辨率重建方法(M-GANs)。首先,对低分辨率图像序列进行运动补偿;其次,使用权值表示卷积层对运动补偿后的图像序列进行权值转换计算;最后,将其输入生成式对抗重建网络,输出重建后的高分辨率图像。实验结果表明:文中方法在主观及客观评价中均优于当前代表性的超分辨率重建方法。 展开更多
关键词 分辨率重建 深度学习 生成对抗神经网络 红外成像
在线阅读 下载PDF
基于改进生成对抗网络的单帧图像超分辨率重建 被引量:7
16
作者 陈宗航 胡海龙 +2 位作者 姚剑敏 严群 林志贤 《液晶与显示》 CAS CSCD 北大核心 2021年第5期705-712,共8页
为了获得更好的图像超分辨率重建质量,提高网络训练的稳定性,对生成对抗网络、损失函数进行研究。首先,介绍了SRGAN和DenseNet,并设计了基于DenseNet的生成网络用以生成图像,且将子像素卷积模块加入到DenseNet中。接着,移除了原本Dense... 为了获得更好的图像超分辨率重建质量,提高网络训练的稳定性,对生成对抗网络、损失函数进行研究。首先,介绍了SRGAN和DenseNet,并设计了基于DenseNet的生成网络用以生成图像,且将子像素卷积模块加入到DenseNet中。接着,移除了原本DenseNet中冗余的BN层,提高了模型的训练效率。最后,介绍了SRGAN的损失函数并基于Earth-Mover距离来重新设计损失函数,并且用SmoothL1损失取代MSE损失来计算VGG特征图,以防止MSE放大最大误差和最小误差间的差距。实验证明该模型在网络训练过程中能够达到稳定收敛的状态。重建出的图像质量对比SRGAN,在3个基准测试集SET5,SET14,BSD100上的平均PSNR要高约2.02 dB,SSIM高约0.042(5.6%)。重建出的图像不仅在指标上有所提升,且拥有更好的清晰度,高频细节更为丰富。 展开更多
关键词 图像分辨率 生成对抗网络 深度学习
在线阅读 下载PDF
生成式对抗网络的图像超分辨率重建 被引量:2
17
作者 王志强 赵莉 肖锋 《西安工业大学学报》 CAS 2020年第1期102-108,共7页
为了提高图像生成效果,减少高频信息损失,文中提出了一种基于深度学习的生成式对抗网络模型结构,实现单幅图像超分辨率重建。文中在SRGAN方法的基础上修改了网络结构、残差网络和卷积参数,采用DIV2K数据集进行网络模型训练,利用峰值信... 为了提高图像生成效果,减少高频信息损失,文中提出了一种基于深度学习的生成式对抗网络模型结构,实现单幅图像超分辨率重建。文中在SRGAN方法的基础上修改了网络结构、残差网络和卷积参数,采用DIV2K数据集进行网络模型训练,利用峰值信噪比和结构相识性两种评价标准对生成的图片质量进行测试与评价。实验结果表明,相较于SRGAN方法生成的高分辨率图像,文中方法生成的图像视觉效果更好、纹理更清晰,具有更好的客观和主观评价。 展开更多
关键词 图像分辨率 深度学习 生成对抗网络 网络模型
在线阅读 下载PDF
一种基于先验生成对抗网络的人脸超分辨率重建方法 被引量:3
18
作者 杜延松 曹林 +2 位作者 杜康宁 宋沛然 郭亚男 《电讯技术》 北大核心 2023年第5期618-625,共8页
针对人脸超分辨率算法中图像失真大、缺乏细节特征等问题,提出了一种基于先验知识的人脸超分辨率重建模型。通过在超分网络中加入纹理辅助分支,为重建过程提供额外纹理结构先验,以生成精细的面部纹理,恢复高分辨率纹理图。同时引入级联... 针对人脸超分辨率算法中图像失真大、缺乏细节特征等问题,提出了一种基于先验知识的人脸超分辨率重建模型。通过在超分网络中加入纹理辅助分支,为重建过程提供额外纹理结构先验,以生成精细的面部纹理,恢复高分辨率纹理图。同时引入级联叠加模块对纹理辅助分支进行反馈。设计特征融合模块,将纹理特征图与超分分支特征图融合,获得更好的纹理细节;将纹理损失融入损失函数,以提高网络恢复纹理细节的能力。4倍放大因子下,该方法的峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似性指数(Structural Similarity Index,SSIM)比现有方法至少提升1.0825 dB和0.036,无参考图像质量评价(Natural Image Quality Evaluator,NIQE)至少降低1.6902;8倍放大因子下,该方法的PSNR与SSIM值分别至少提升0.7875 dB和0.04685,NIQE值最小降低3.92。 展开更多
关键词 人脸分辨率重建 先验知识 生成对抗网络(GAN)
在线阅读 下载PDF
基于离散小波包变换与胶囊生成对抗网络的语音超分辨率算法 被引量:1
19
作者 陈习坤 杨俊美 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1039-1049,共11页
目前主流的语音超分辨率(Speech Super-Resolution,SSR)算法是使用卷积神经网络(Convolutional Neu-ral Networks,CNN)把低分辨率(Low-Resolution,LR)语音信号转换为高分辨率(High-Resolution,HR)的语音信号.但只使用普通的CNN所带来的... 目前主流的语音超分辨率(Speech Super-Resolution,SSR)算法是使用卷积神经网络(Convolutional Neu-ral Networks,CNN)把低分辨率(Low-Resolution,LR)语音信号转换为高分辨率(High-Resolution,HR)的语音信号.但只使用普通的CNN所带来的效果通常比较平滑且缺少细节信息.生成对抗网络(Generative Adversarial Networks,GAN)的引入可以很好地解决这一问题.此外,胶囊网络(Capsule Networks,CapsNet)可以将空间信息编码为特征,这样与GAN结合可以更好地判断数据的真假.离散小波变换(Discrete Wavelet Transform,DWT)是一种正交多分辨分析的工具,它在信号处理方面有很出色的表现.小波变换的一个扩展是离散小波包变换(Discrete Wavelet Packet Transform,DWPT),它在某些应用中提供了更有效的信号分析.本文提出一种基于DWPT和胶囊生成对抗网络(CapsGAN)的SSR网络架构Wavelet-SRGAN.对比实验结果表明,本文所提的算法能以最少的参数实现与现有先进算法相当的性能.在算法上有几个核心步骤:(1)在生成器网络中加入DWPT层;(2)在鉴别器上加入胶囊网络;(3)训练时加入小波损失. 展开更多
关键词 语音分辨率 生成对抗网络 离散小波变换 离散小波包变换 小波损失
在线阅读 下载PDF
基于生成对抗网络的图像超分辨率重建算法 被引量:7
20
作者 刘郭琦 刘进锋 朱东辉 《液晶与显示》 CAS CSCD 北大核心 2021年第12期1720-1727,共8页
SRGAN是基于深度学习的图像超分辨率的典型方法,重建效果较好,但该算法还存在一些缺陷,在提高图像质量和运行速度上仍然有较大提升空间。本文在SRGAN网络模型的基础上提出了一个优化模型。因为批量归一化(BN)层在超分辨图像重建中常常... SRGAN是基于深度学习的图像超分辨率的典型方法,重建效果较好,但该算法还存在一些缺陷,在提高图像质量和运行速度上仍然有较大提升空间。本文在SRGAN网络模型的基础上提出了一个优化模型。因为批量归一化(BN)层在超分辨图像重建中常常会忽略一些图像的细节,同时增加网络的复杂度,所以在SRGAN的生成器中去除了BN层,并引入ECA通道注意力,使每个残差块生成特征图获得相应的权重,以便处理更多的图像细节。经过公开数据集的训练和对比实验,结果表明提出的改进模型相比于对比模型,重建图像的细节恢复更丰富,视觉效果更好,峰值信噪比和结构相似性表现更佳,模型总参数量更少。 展开更多
关键词 分辨率图像重建 生成对抗网络 通道注意力 残差网络 批量归一化
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部