针对书画文物的褪色和画面暗旧等问题,提出了一种基于增强型超分辨率生成对抗网络的文物图像色彩重建(Color Reconstruction of Cultural Relic Images Based on Enhanced Super-Resolution Generative Adversarial Network, CR-ESRGAN...针对书画文物的褪色和画面暗旧等问题,提出了一种基于增强型超分辨率生成对抗网络的文物图像色彩重建(Color Reconstruction of Cultural Relic Images Based on Enhanced Super-Resolution Generative Adversarial Network, CR-ESRGAN)模型。该模型针对缺少成对图像的数据集问题,在双3次下采样的基础上提出了利用颜色迁移算法来生成逼真的暗旧、褪色的文物图像。同时改进了ESRGAN网络,在其生成网络中引入自注意力机制,以增强重建图像的纹理细节。在常用图像质量评价指标峰值信噪比(Peak Signal to Noise Ratio, PSNR)/结构相似性(Structural Sililarity Index, SSIM)的基础上引入颜色评价指标CIEDE2000,以更加全面、客观地评价重建图像的质量。与现有几种超分辨率算法以及其文物图像色彩修复方法相比,视觉效果和图像质量有较高的提升。展开更多
针对基于生成对抗网络的图像超分辨率重建方法依赖配对数据集训练且结果不稳定的问题,提出了一个新的基于无配对图像的模型NM-SRGAN。首先,通过使用循环生成对抗网络作预处理模块,使模型可以不依赖配对数据集进行训练且获得更好的输入图...针对基于生成对抗网络的图像超分辨率重建方法依赖配对数据集训练且结果不稳定的问题,提出了一个新的基于无配对图像的模型NM-SRGAN。首先,通过使用循环生成对抗网络作预处理模块,使模型可以不依赖配对数据集进行训练且获得更好的输入图像,同时该模型取消了BN层的使用,解决了结果不稳定的问题。然后,使用了协方差矩阵捕捉图像的二阶信息,增加了二阶损失函数,更加注重于捕捉图像细节区域部分的变化。最后,通过使用新的VGG损失函数提升了图像的边缘纹理细节。对提出的NM-SRGAN模型在4个标准数据集上进行测试评估,使用客观评价标准对结果图进行评价,NM-SRGAN模型较目前若干先进模型中的最佳峰值信噪比分别提升了0.19、0.03、0.13、0.02 d B,在4个数据集上的评价值均达到最高。实验结果表明,该模型在稳定性、图像质量和细节方面较经典算法均有较好的提升。展开更多
针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高...针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高生成器特征提取的能力。其次,在损失函数中引入鲁棒性更好的Charbonnier损失函数和Focal Frequency Loss损失函数代替均方差损失函数,同时加入正则化损失平滑训练结果,防止图像过于像素化。最后,在生成器和判别器中采用谱归一化处理,提高网络的稳定性。在4倍放大因子下,与其他方法在Set5、Set14、BSDS100、Urban100测试集上进行测试比较,本文方法的峰值信噪比比其他对比方法的平均值提升1.419 dB,结构相似性比其他对比方法的平均值提升0.051。实验数据和效果图表明,该方法主观上具有丰富的细节和更好的视觉效果,客观上具有较高的峰值信噪比值和结构相似度值。展开更多
针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化...针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化在SRGAN的生成器,将坐标注意力机制与残差网络相结合构造CR模块,促进通道之间信息的流通,并加强了网络的特征选择能力;同时在主网络构建了层次化特征融合结构,提高在深层网络中对早期特征的利用,大量的长短跳连接缓解了梯度消失,提高了网络收敛速度.在Set5、Set14、BSD100和Urban100数据集上与RFB-ESRGAN、ESRGAN等模型进行测试,在峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高,同时模型参数量有极大减少,重建的图像在清晰度、结构完整性等方面都有所提高.展开更多
文摘针对书画文物的褪色和画面暗旧等问题,提出了一种基于增强型超分辨率生成对抗网络的文物图像色彩重建(Color Reconstruction of Cultural Relic Images Based on Enhanced Super-Resolution Generative Adversarial Network, CR-ESRGAN)模型。该模型针对缺少成对图像的数据集问题,在双3次下采样的基础上提出了利用颜色迁移算法来生成逼真的暗旧、褪色的文物图像。同时改进了ESRGAN网络,在其生成网络中引入自注意力机制,以增强重建图像的纹理细节。在常用图像质量评价指标峰值信噪比(Peak Signal to Noise Ratio, PSNR)/结构相似性(Structural Sililarity Index, SSIM)的基础上引入颜色评价指标CIEDE2000,以更加全面、客观地评价重建图像的质量。与现有几种超分辨率算法以及其文物图像色彩修复方法相比,视觉效果和图像质量有较高的提升。
文摘针对基于生成对抗网络的图像超分辨率重建方法依赖配对数据集训练且结果不稳定的问题,提出了一个新的基于无配对图像的模型NM-SRGAN。首先,通过使用循环生成对抗网络作预处理模块,使模型可以不依赖配对数据集进行训练且获得更好的输入图像,同时该模型取消了BN层的使用,解决了结果不稳定的问题。然后,使用了协方差矩阵捕捉图像的二阶信息,增加了二阶损失函数,更加注重于捕捉图像细节区域部分的变化。最后,通过使用新的VGG损失函数提升了图像的边缘纹理细节。对提出的NM-SRGAN模型在4个标准数据集上进行测试评估,使用客观评价标准对结果图进行评价,NM-SRGAN模型较目前若干先进模型中的最佳峰值信噪比分别提升了0.19、0.03、0.13、0.02 d B,在4个数据集上的评价值均达到最高。实验结果表明,该模型在稳定性、图像质量和细节方面较经典算法均有较好的提升。
文摘针对现有生成对抗网络的单图像超分辨率重建在大尺度因子下存在训练不稳定、特征提取不足和重建结果纹理细节严重缺失的问题,提出一种拆分注意力网络的单图超分辨率重建方法。首先,以拆分注意力残差模块作为基本残差块构造生成器,提高生成器特征提取的能力。其次,在损失函数中引入鲁棒性更好的Charbonnier损失函数和Focal Frequency Loss损失函数代替均方差损失函数,同时加入正则化损失平滑训练结果,防止图像过于像素化。最后,在生成器和判别器中采用谱归一化处理,提高网络的稳定性。在4倍放大因子下,与其他方法在Set5、Set14、BSDS100、Urban100测试集上进行测试比较,本文方法的峰值信噪比比其他对比方法的平均值提升1.419 dB,结构相似性比其他对比方法的平均值提升0.051。实验数据和效果图表明,该方法主观上具有丰富的细节和更好的视觉效果,客观上具有较高的峰值信噪比值和结构相似度值。
文摘针对现有图像超分辨率重建模型参数过大,难以在现实中应用的问题,提出了一种单图像超分辨率重建模型——基于坐标注意力机制的生成对抗网络(Generative Adversarial Network Based on Coordinate Attention Mechanism,CSRGAN).通过优化在SRGAN的生成器,将坐标注意力机制与残差网络相结合构造CR模块,促进通道之间信息的流通,并加强了网络的特征选择能力;同时在主网络构建了层次化特征融合结构,提高在深层网络中对早期特征的利用,大量的长短跳连接缓解了梯度消失,提高了网络收敛速度.在Set5、Set14、BSD100和Urban100数据集上与RFB-ESRGAN、ESRGAN等模型进行测试,在峰值信噪比(PSNR)和结构相似度(SSIM)都有所提高,同时模型参数量有极大减少,重建的图像在清晰度、结构完整性等方面都有所提高.